Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period

Abstract

Ice cores provide a record of changes in dust flux to Antarctica, which is thought to reflect changes in atmospheric circulation and environmental conditions in dust source areas1,2,3,4,5,6,7,8,9. Isotopic tracers suggest that South America is the dominant source of the dust10,11,12, but it is unclear what led to the variable deposition of dust at concentrations 20–50 times higher than present in glacial-aged ice8,9. Here we characterize the age and composition of Patagonian glacial outwash sediments, to assess the relationship between the Antarctic dust record from Dome C (refs 913) and Patagonian glacial fluctuations14,15,16 for the past 80,000 years. We show that dust peaks in Antarctica coincide with periods in Patagonia when rivers of glacial meltwater deposited sediment directly onto easily mobilized outwash plains. No dust peaks were noted when the glaciers instead terminated directly into pro-glacial lakes. We thus propose that the variable sediment supply resulting from Patagonian glacial fluctuations may have acted as an on/off switch for Antarctic dust deposition. At the last glacial termination, Patagonian glaciers quickly retreated into lakes, which may help explain why the deglacial decline in Antarctic dust concentrations preceded the main phase of warming, sea-level rise and reduction in Southern Hemisphere sea-ice extent13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and isotopic composition of late-glacial lake sediments from Patagonia.
Figure 2: Glacier limits marked by moraines and outwash plains, Patagonia.
Figure 3: Glacial stages in Patagonia compared with Antarctic ice cores.

Similar content being viewed by others

References

  1. Forster, P. V. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Diekmann, B. et al. Terrigenous sediment supply in the Scotia Sea (Southern Ocean): Response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 357–387 (2000).

    Article  Google Scholar 

  3. Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. & Mahowald, N. Covariant glacial–interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93–96 (2008).

    Article  Google Scholar 

  4. Reader, M. C., Fung, I. & McFarlane, N. The mineral dust aerosol cycle during the Last Glacial Maximum. J. Geophys. Res. 104, 9381–9398 (1999).

    Article  Google Scholar 

  5. Mahowald, N. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104, 5895–15916 (1999).

    Article  Google Scholar 

  6. Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  7. Delmonte, B. et al. Aeolian dust in East Antarctica (EPICA Dome C and Vostok): Provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett. 35, L07703 (2008).

    Article  Google Scholar 

  8. Petit, J.-R. et al. Palaeoclimatic implications of the Vostok core dust record. Nature 343, 56–58 (1990).

    Article  Google Scholar 

  9. Lambert, F. et al. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

    Article  Google Scholar 

  10. Grousset, F. E. et al. Antarctic (Dome C) ice-core dust at 18 k.y.B.P.: Isotopic constraints on origins. Earth Planet. Sci. Lett. 111, 175–182 (1992).

    Article  Google Scholar 

  11. Basile, I. et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573–589 (1997).

    Article  Google Scholar 

  12. Gaiero, D. M. et al. A uniform isotopic and chemical signature of dust exported from Patagonia; rock sources and occurrences in southern environments. Chem. Geol. 238, 107–120 (2007).

    Article  Google Scholar 

  13. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    Article  Google Scholar 

  14. Sugden, D. E. et al. Late-glacial glacier events in southernmost South America: A blend of ‘northern’ and ‘southern’ hemispheric climate signals. Geogr. Annlr. A 87, 273–288 (2005).

    Article  Google Scholar 

  15. McCulloch, R. D. et al. Chronology of the last glaciation in the Strait of Magellan and Bahía Inútil, southernmost South America. Geogr. Annlr. A 87, 289–312 (2005).

    Article  Google Scholar 

  16. Kaplan, M. R. et al. Southern Patagonian glacial chronology for the last glacial period and implications for Southern Ocean climate. Quat. Sci. Rev. 27, 284–294 (2008).

    Article  Google Scholar 

  17. Swift, D. A., Nienow, P. W., Hoey, T. B. & Mair, D. W. F. Seasonal evolution of runoff from Haut Glacier d’Arolla, Switzerland and implications for glacial geomorphic processes. J. Hydrol. 309, 133–148 (2005).

    Article  Google Scholar 

  18. Santana, A., Porter, C., Butorovic, N. & Olave, C. Características climáticas del Canal Brecknock el los 5430′ S de latitud, Magallanes, Chile. Anales Instituto Patagonia (Chile) 35, 5–18 (2007).

    Google Scholar 

  19. Hulton, N. R. J. & Sugden, D. E. Modelling mass balance on former maritime ice caps: Patagonian example. Ann. Glaciol. 21, 304–310 (1995).

    Article  Google Scholar 

  20. Church, M. Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci. 34, 325–354 (2006).

    Article  Google Scholar 

  21. Biscaye, P. E. et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. 102, 26765–26781 (1997).

    Article  Google Scholar 

  22. Bory, A. J.-M., Biscaye, P. E., Svensson, A. & Grousset, F. E. Seasonal variability in the origin of recent atmospheric mineral dust at North GRIP, Greenland. Earth Planet. Sci. Lett. 196, 123–134 (2002).

    Article  Google Scholar 

  23. Bory, A. J.-M., Biscaye, P. E., Piotrowski, A. M. & Steffensen, J. P. Regional variability of ice core dust composition and provenance in Greenland. Geochem. Geophys. Geosystems 4, 1107 (2003).

    Article  Google Scholar 

  24. Gaiero, D. M. Dust provenance in Antarctic ice during glacial periods; from where in South America? Geophys. Res. Lett. 34, L17707 (2007).

    Article  Google Scholar 

  25. Blum, J. D. & Erel, Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373, 415–418 (1995).

    Article  Google Scholar 

  26. McCulloch, R. D., Bentley, M. J., Tipping, R. M. & Clapperton, C. M. Evidence for late-glacial ice-dammed lakes in the central Strait of Magellan and Bahía Inútil, southernmost South America. Geogr. Annlr. A 87, 335–362 (2005).

    Article  Google Scholar 

  27. Benn, D. I. & Clapperton, C. M. Pleistocene glacitectonic landforms and sediments around central Magellan Strait, southernmost Chile. Quat. Sci. Rev. 19, 591–612 (2000).

    Article  Google Scholar 

  28. Lamy, F. et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2005).

    Article  Google Scholar 

  29. Goldstein, S. L., Deines, P., Oelkers, E. H., Rudnick, R. L. & Walter, L. M. Standards for publication of isotopic ratio and chemical data in Chemical Geology. Chem. Geol. 202, 1–4 (2003).

    Article  Google Scholar 

  30. Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., McCulloch, M. T. & Wen, T. Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–2323 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank for financial support: NERC, Royal Society, Carnegie Trust for the Universities of Scotland, British Antarctic Survey, FONDECYT 1060020, EU Marie Curie Fellowship; and for laboratory support: C. Bryant and NERC Radiocarbon Laboratory, A. Hanley (Lamont-Doherty Earth Observatory, Columbia University) and M. Greaves (Cambridge University). P. Biscaye, T. Crowley, B. Delmonte, H. Elderfield, T. Hoey, R. Purves and E. Wolff were encouraging and insightful.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper and in the following ways: ice cores and dust analyses (A.J.-M.B.), chronology and palaeoclimate of Patagonia (R.D.M.), glacial geomorphology in Patagonia (D.E.S., A.S.H.)

Corresponding authors

Correspondence to David E. Sugden or Aloys J.-M. Bory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugden, D., McCulloch, R., Bory, AM. et al. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geosci 2, 281–285 (2009). https://doi.org/10.1038/ngeo474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing