Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyclicity in Cordilleran orogenic systems

Abstract

Cordilleran orogenic systems, such as the modern Andes, are long belts of deformation and magmatism that are associated with the subduction of oceanic plates beneath continental ones. Although the oceanic plates have been thought to control the evolution of such systems, a number of processes operating in the upper continental plates have not been fully accounted for. The western American Cordilleras, for example, display a 25–50 million year (Myr) cycle of linked upper-plate processes. In a typical cycle, as the two plates converge and a magmatic arc forms, most of the continental crust shortens by thrusting behind the arc, whereas the lowermost continental lithosphere is shoved beneath the arc — a process that fuels episodic high-flux magmatism in the arc and simultaneously generates dense melt residues. On reaching a critical mass, these residues sink into the mantle, creating space beneath the arc and setting the stage for renewal of the cycle. This alternative model explains key features of Cordilleran systems, such as cyclical trends in the flux and composition of magma supplied to the upper plate, and the foundering of arc roots.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of the North and South American Cordilleran orogenic belts5.
Figure 2: Magmatic histories of Cordilleran arcs.
Figure 3: Evolution of Cordilleran orogenic systems.
Figure 4: Temporal evolution of key processes and responses in the Cordilleran cycle.

Similar content being viewed by others

References

  1. Anderson, J. L. in The Nature and Origin of Cordilleran Magmatism (ed. Anderson, J. L.) (Geol. Soc. Am. Mem. Vol. 174, Geological Society of America, 1990).

    Google Scholar 

  2. Pitcher, W. S. The Nature and Origin of Granite (Chapman & Hall, 1997).

    Google Scholar 

  3. Allmendinger, R. W., Jordan, T. E., Kay, S. M. & Isacks, B. L. The evolution of the Altiplano-Puna Plateau of the central Andes. Ann. Rev. Earth Planet. Sci. 25, 139–174 (1997).

    Google Scholar 

  4. Davidson, J. P. & Arculus, R. J. in Evolution and Differentiation of the Continental Crust (eds Rushmer, T. & Brown, M.) 135–172 (Cambridge Univ. Press, 2006).

    Google Scholar 

  5. Dickinson, W. R. Evolution of the Western Cordillera of North America. Ann. Rev. Earth Planet. Sci. 32, 13–45 (2004).

    Google Scholar 

  6. Schellart, W. P. Overriding plate shortening and extension above subduction zones: A parametric study to explain formation of the Andes Mountains. Geol. Soc. Am. Bull. 120, 1441–1454 (2008).

    Google Scholar 

  7. Oncken, O. et al. in The Andes: Active Subduction Orogeny (eds Oncken, O. et al.) 3–27 (Springer, 2006).

    Google Scholar 

  8. Barton, M. D. in The Nature and Origin of Cordilleran Magmatism (ed. Anderson, J. L.) 283–302 (Geol. Soc. Am. Mem. Vol. 174, Geological Society of America, 1990).

    Google Scholar 

  9. Barton, M. D. Granitic magmatism and metallogeny of southwestern North America. Trans. R. Soc. Edinb. 87, 261–280 (1996).

    Google Scholar 

  10. Ernst, W. G. in The Cordilleran Orogen: Conterminous U. S. (eds Burchfiel, B. C., Lipman, P. W. & Zoback, M. L.) 515–538 (Geological Society of America, 1992).

    Google Scholar 

  11. Hodges, K. V. & Walker, J. D. Extension in the Cretaceous Sevier orogen, North American Cordillera. Geol. Soc. Am. Bull. 104, 560–569 (1992).

    Google Scholar 

  12. DeCelles, P. G. & Coogan, J. C. Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah. Geol. Soc. Am. Bull. 118, 841–864 (2006).

    Google Scholar 

  13. Price, R. A. & Fermor, P. R. Structure section of the Cordilleran foreland thrust and fold belt west of Calgary, Alberta. Geol. Surv. Can. Pap. 84–14 (1985).

  14. Kay, R. W. & Kay, S. M. Creation and destruction of the lower continental crust. Geol. Rundsch. 80, 259–270 (1991).

    Google Scholar 

  15. Ducea, M. N. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. J. Geophys. Res. 107, 10.1029/2001JB000643 (2002).

    Google Scholar 

  16. Lee, C. T., Cheng, X. & Horodyskyj, U. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib. Mineral. Petrol. 151, 222–242 (2006).

    Google Scholar 

  17. Sobolev, S. V., Babeyko, A., Koulakov, I. & Onken, O. in The Andes: Active Subduction Orogeny (eds Oncken, O. et al.) 513–535 (Springer, 2006).

    Google Scholar 

  18. Kley, J. & Monaldi, C. R. Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? Geology 26, 723–726 (1998).

    Google Scholar 

  19. Price, R. A. & Sears, J. W. in The Geological Environment of the Sullivan Deposit, British Columbia (eds Lydon, J. W. et al.) 61–81 (Geol. Assoc. Can., Min. Dep. Div. Spec. Vol. 1, 2000).

    Google Scholar 

  20. McQuarrie, N. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geol Soc. Am. Bull. 114, 950–963 (2002).

    Google Scholar 

  21. Kapp, P. et al. The Gangdese retroarc thrust belt revealed. GSA Today 17, 4–10 (2007).

    Google Scholar 

  22. Bally, A. W., Gordy, P. L. & Stewart, G. A. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 14, 337–340 (1966).

    Google Scholar 

  23. Dahlstrom, C. D. A. Structural geology of the eastern margin of the Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 18, 331–406 (1970).

    Google Scholar 

  24. Boyer, S. E. & Elliott, D. Thrust systems. Bull. Am. Assoc. Petrol. Geol. 66, 1196–1230 (1982).

    Google Scholar 

  25. Oldow, J. S., Bally, A. W. & Ave Lallemant, H. G. Transpression, orogenic float, and lithospheric balance. Geology 18, 991–994 (1990).

    Google Scholar 

  26. Rogers, G. & Hawkesworth, C. J. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet. Sci. Lett. 91, 271–285 (1989).

    Google Scholar 

  27. Haschke, M., Siebel, W., Günther, A. & Scheuber, E. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). J. Geophys. Res. 107, 10.1029/2001JB000328 (2002).

  28. Hyndman, R. D., Currie, C. A. & Mazzotti, S. P. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15, 4–10 (2005).

    Google Scholar 

  29. Kay, S. M., Coira, B. & McBride, S. Sources of late Miocene to Holocene magmas, changes in subduction geometry, and removal of crustal and mantle lithosphere beneath the southern Puna Plateau in the Central Andes. Geophys. Res. Abstr. 7, 1607 (2005).

    Google Scholar 

  30. Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).

    Google Scholar 

  31. Hoke, L. & Lamb, S. Cenozoic behind-arc volcanism in the Bolivian Andes, South America: Implications for mantle melt generation and lithospheric structure. J. Geol. Soc. Lond. 164, 795–814 (2007).

    Google Scholar 

  32. Ducea, M. N. & Barton, M. D. Igniting flare-up events in Cordilleran arcs. Geology 35, 1047–1050 (2007).

    Google Scholar 

  33. Zandt, G. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada, California. Nature 432, 41–46 (2004).

    Google Scholar 

  34. Saleeby, J., Ducea, M. & Clemens-Knott, D. Production and loss of high-density batholithic root, southern Sierra Nevada region. Tectonics 22, 10.1029/2002TC001374 (2003).

  35. Hamilton, W. B. Plate tectonics and island arcs. Geol. Soc. Am. Bull. 100, 1503–1527 (1988).

    Google Scholar 

  36. Davies, J. H. & Bickle, M. J. A physical model for the volume and composition of melt produced by hydrous fluxing above subduction. Phil. Trans. R. Soc. A 335, 355–364 (1991).

    Google Scholar 

  37. Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C. & Baker, M. B. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib. Mineral. Petrol. 142, 375–396 (2002).

    Google Scholar 

  38. Reymer, A. & Schubert, G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3, 63–77 (1984).

    Google Scholar 

  39. Silver, L. T. & Chappell, B. W. The Peninsular Ranges batholith: An insight into the evolution of the Cordilleran batholiths of southwestern North America. Trans. R. Soc. Edinb. 79, 105–121 (1988).

    Google Scholar 

  40. DeBari, S. M., Evolution of oceanic and continental arc magmas: The importance of residence in the lower crust. Can. Mineral. 35, 501–519 (1997).

    Google Scholar 

  41. Armstrong, R. L. Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera. Spec. Pap. Geol. Soc. Am. 218, 55–91 (1988).

    Google Scholar 

  42. Ghosh, D. K. Nd–Sr isotopic constraints on the interactions of the Intermontane Superterrane with the western edge of North America in the southern Canadian Cordillera. Can. J. Earth Sci. 32, 1740–1758 (1995).

    Google Scholar 

  43. Ducea, M. N. The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11, 4–10 (2001).

    Google Scholar 

  44. De Silva, S. et al. Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: A thermomechanical perspective. Spec. Publ. Geol. Soc. (Lond.) 269, 47–63 (2006).

    Google Scholar 

  45. Babeyko, A. et al. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet. Sci. Lett. 199, 373–388 (2002).

    Google Scholar 

  46. Fliedner, M. M., Klemperer, S. L. & Christensen, N. I. Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. J. Geophys. Res. 105, 10899–10921 (2000).

    Google Scholar 

  47. Lewis, J. L. et al. Regional crustal thickness variations of the Peninsular Ranges, southern California. Geology 28, 303–306 (2000).

    Google Scholar 

  48. Saleeby, J. in Exposed Cross-Sections of Continental Crust (eds Salisbury, M. H. & Fountain, D. M.) 137–158 (NATO Advanced Study Institute Series C, Vol. 317, Kluwer Academic, 1990).

    Google Scholar 

  49. Kidder, S. et al. Tectonic and magmatic development of the Salinian Coast Range Belt, California. Tectonics 22, 10.1029/2002TC001409 (2003).

    Google Scholar 

  50. Wolf, M. B. & Wyllie, P. J. Garnet growth during amphibolite anatexis: Implications of a garnetiferous restite. J. Geol. 101, 357–373 (1993).

    Google Scholar 

  51. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalts at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Google Scholar 

  52. Rushmer, T. An experimental deformation study of partially molten amphibolite: Application to low-melt fraction segregation. J. Geophys. Res. 100, 15681–15695 (1995).

    Google Scholar 

  53. Beck, S. & Zandt, G. The nature of orogenic crust in the central Andes. J. Geophys. Res. 107, 10.1029/2000JB000124 (2002).

  54. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993).

    Google Scholar 

  55. Garzione, C. N. et al. Rise of the Andes. Science 320, 1304–1307 (2008).

    Google Scholar 

  56. Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    Google Scholar 

  57. Platt, J. P. Dynamics of orogenic wedges and uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 97, 1037–1053 (1986).

    Google Scholar 

  58. DeCelles, P. G. & Mitra, G. History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull. 107, 454–462 (1995).

    Google Scholar 

  59. Clift, P. D. & Hartley, A. J. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506 (2007).

    Google Scholar 

  60. Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 10.1029/2003RG000127 (2004).

  61. Lamb, S. & Davis, P. M. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–297 (2003).

    Google Scholar 

  62. Dickinson, W. R. in Tectonics of Sedimentary Basins (eds Busby, C. J. & Ingersoll, R. V.) 221–261 (Blackwell Science, 1995).

    Google Scholar 

  63. von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res. 108, 10.1029/2001JB001569 (2003).

  64. DeCelles, P. G. & DeCelles, P. C. Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology 29, 135–138 (2001).

    Google Scholar 

  65. Kay, S. M., Coira, B. & Viramonte, J. Young mafic back-arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, Central Andes. J. Geophys. Res. 99, 24323–24339 (1994).

    Google Scholar 

  66. Asch, G. et al., in The Andes: Active Subduction Orogeny (eds Oncken, O. et al.) 443–447 (Springer, 2006).

    Google Scholar 

  67. Wells, M. L. & Hoisch, T. D. The role of mantle delamination in widespread late Cretaceous extension and magmatism in the Cordilleran orogen, western United States. Geol. Soc. Am. Bull. 120, 515–530 (2008).

    Google Scholar 

  68. Pilger, R. H. Jr Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geol. Soc. Am. Bull. 92, 448–456 (1981).

    Google Scholar 

  69. McGeary, S., Nur, A. & Ben-Avraham, Z. Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus. Tectonophysics 119, 195–211 (1985).

    Google Scholar 

  70. Gutscher, M.-A., Maury, R., Eissen, J.-P. & Bourdon, E. Can slab melting be caused by flat subduction? Geology 28, 535–538 (2000).

    Google Scholar 

  71. Kay, S. M. & Abbruzzi, J. M. Magmatic evidence for Neogene lithospheric evolution of the Central Andean flat-slab between 30 and 32°S. Tectonophysics 259, 15–28 (1996).

    Google Scholar 

  72. Dickinson, W. R. & Snyder, W. S. Geometry of subducted slabs related to San Andreas transform. J. Geol. 87, 609–627 (1979).

    Google Scholar 

  73. Jordan, T. E. et al. Andean tectonics related to geometry of subducted Nazca plate. Geol. Soc. Am. Bull. 94, 341–361 (1983).

    Google Scholar 

  74. Wagner, L. S, Beck, S. & Zandt, G. Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. 110, 10.1029/2004JB003238 (2005).

  75. Saleeby, J. Segmentation of the Laramide slab-evidence from the southern Sierra Nevada region. Geol. Soc. Am. Bull. 115, 655–668 (2003).

    Google Scholar 

  76. Espurt, N. et al. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35, 515–518 (2007).

    Google Scholar 

  77. Zandt, G., Gilbert, H., Jones, C. & Owens, T. Insights on lithospheric delamination from the Sierra Nevada Project (SNEP). Geol. Soc. Am. Abstr. Prog. 40, 396 (2008).

    Google Scholar 

  78. Le Pourhiet, L., Gurnis, M. & Saleeby, J. Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension. Earth Planet. Sci. Lett. 251, 104–119 (2006).

    Google Scholar 

  79. Gilbert, H., Jones, C., Owens, T. J. & Zandt, G. Imaging Sierra Nevada lithospheric sinking. Eos 88, 10.1029/2007EO210001 (2007).

  80. Saleeby, J. B. in Exposed Crustal Sections of the Continental Crust (eds Salisbury, M. H. & Fountain, D. M.) 137–158 (Kluwer Academic, 1990).

    Google Scholar 

  81. Camilleri, P. et al. in Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology — Utah, Nevada, Southern Idaho and Central Mexico (eds Link, P. K. & Kowallis, B. J.) 297–309 (Brigham Young Univ. Geol. Studies Vol. 42, 1997).

    Google Scholar 

  82. Wyld, S. J. Structural evolution of a Mesozoic backarc fold-and-thrust belt in the U. S. Cordillera: New evidence from northern Nevada. Geol. Soc. Am. Bull. 114, 1452–1468 (2002).

    Google Scholar 

  83. Gehrels, G. E. et al. U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age, petrogenesis, and tectonic evolution. Geol. Soc. Am. Bull. (in the press).

  84. Girardi, J. D., Patchett, P. J., Ducea, M. N. & Gehrels, G. E. Geochemical characteristics of plutons emplaced in a contracting arc and evidence for the development of gravitationally unstable residual arc rocks, Coast Mountains, B. C. Eos 88, Fall Meet. Suppl. Abstr. T11B-0580 (2007).

  85. Calkins, J. A. et al. Characterization of the crust of the Coast Mountains batholith, British Columbia, from P to S converted seismic waves and petrologic modeling. Earth Planet. Sci. Lett. (in the press).

  86. Evenchick, C. A., McMechan, M. E., McNicoll, V. J. & Carr, S. D. in Whence the Mountains? (eds Sears, J. L. et al.) 117–145 (Geol. Soc. Am. Spec. Pap. Vol. 433, Geological Society of America, 2007).

    Google Scholar 

  87. Gubbels, T. L., Isacks, B. L. & Farrar, E. High level surfaces, plateau uplift and foreland development, Central Bolivian Andes. Geology 21, 695–698 (1993).

    Google Scholar 

  88. Echavarria, L., Hernandez, R., Allmendinger, R. W. & Reynolds, J. Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution. Bull. Am. Assoc. Petrol. Geol. 87, 965–985 (2003).

    Google Scholar 

  89. Elger, K., Oncken, O. & Glodny, J. Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24, TC4020 (2005).

    Google Scholar 

  90. Gillis, R. J., Horton, B. & Grove, M. Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: Implications for Cenozoic exhumation of the Central Andean Plateau. Tectonics 25, TC6007 (2006).

    Google Scholar 

  91. Gregory-Wodzicki, K. M. Uplift history of the central and northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).

    Google Scholar 

  92. Chmielowski, J., Zandt, G. & Haberland, C. The central Andean Altiplano-Puna magma body. Geophys. Res. Lett. 26, 783–786 (1999).

    Google Scholar 

  93. Yuan, X., Sobolev, S. V. & Kind, R. Moho topography in the central Andes and its geodynamic implications. Earth Planet. Sci. Lett. 199, 389–402 (2002).

    Google Scholar 

  94. Zandt, G. et al. Seismic detection and characterization of the Altiplano-Puna magma body, central Andes. Pure Appl. Geophys. 160, 789–807 (2003).

    Google Scholar 

  95. Ege, H. et al. Thrust-related exhumation revealed by apatite fission track dating, Central Andes (southern Bolivia). Geophys. Res. Abstr. 3, 624 (2001).

    Google Scholar 

  96. Heit, B. et al. An S receiver function analysis of the lithospheric structure in South America. Geophys. Res. Lett. 34, L14307 (2007).

    Google Scholar 

  97. Coira, B. & Kay, S. M. Implications of Quaternary volcanism at Cerro Tuzgle for crustal and mantle evolution of the Puna plateau, Central Andes, Argentina. Contrib. Mineral. Petrol. 113, 40–58 (1993).

    Google Scholar 

  98. Kendrick, E. et al. Active orogeny of the south-central Andes studied with GPS geodesy. Rev. Assoc. Geol. Argentina 61, 555–566 (2006).

    Google Scholar 

  99. Pindell, J. L., Higgs, R. & Dewey, J. F. in Paleogeographic Evolution and Non-glacial Eustasy, Northern South America (eds Pindell, J. L. & Drake, C. L.) 45–86 (SEPM Spec. Publ. 58, Society for Sedimentary Geology, 1998).

    Google Scholar 

  100. Lithgow-Bertelloni, C. & Gurnis, M. Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geology 25, 735–738 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank S. Kay, M. D. Barton, S. L. Beck, B. Carrapa, S. A. Graham, W. R. Dickinson, G. E. Gehrels, A. Leier, J. Kendall, M. McGroder, G. Gray, R. Barke, T. Demko, C. Garzione, D. Pearson, numerous graduate students, and participants in the University of Arizona Andes Seminar for discussions and insights into Cordilleran systems. We thank J. Girardi and J. Patchett for access to isotopic data from the Coast Mountains batholith. Financial support for research leading to this paper was provided by ExxonMobil and NSF EAR programmes (Tectonics, Earthscope, Geophysics and Continental Dynamics). We thank B. S. Currie, S. Ellis, and R. V. Ingersoll for thoughtful reviews that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. DeCelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCelles, P., Ducea, M., Kapp, P. et al. Cyclicity in Cordilleran orogenic systems. Nature Geosci 2, 251–257 (2009). https://doi.org/10.1038/ngeo469

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing