Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbitally driven east–west antiphasing of South American precipitation

Abstract

The variations of tropical precipitation are antiphased between the hemispheres on orbital timescales. This antiphasing arises through the alternating strength of incoming solar radiation in the two hemispheres, which affects monsoon intensity and hence the position of the meridional atmospheric circulation of the Hadley cells1,2,3,4. Here we compare an oxygen isotopic record recovered from a speleothem from northeast Brazil for the past 26,000 years with existing reconstructions of precipitation in tropical South America5,6,7,8. During the Holocene, we identify a similar, but zonally oriented, antiphasing of precipitation within the same hemisphere: northeast Brazil experiences humid conditions during low summer insolation and aridity when summer insolation is high, whereas the rest of southern tropical South America shows opposite characteristics. Simulations with a general circulation model that incorporates isotopic variations support this pattern as well as the link to insolation-driven monsoon activity. Our results suggest that convective heating over tropical South America and associated adjustments in large-scale subsidence over northeast Brazil lead to a remote forcing of the South American monsoon, which determines most of the precipitation changes in the region on orbital timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term mean (1979–2000) Climate Prediction Center Merged Analysis of Precipitation seasonal precipitation totals (in mm) for December–February (left) and March–May (right).
Figure 2: Comparison between South American paleoclimate records.
Figure 3: Difference in austral summer and autumn (DJFMAM) climate between 6 kyr BP and the present as simulated with ECHAM-4.

Similar content being viewed by others

References

  1. Thompson, L. G. et al. Tropical ice core records: Evidence for asynchronous glaciation on Milankovitch timescales. J. Quat. Sci. 20, 723–733 (2005).

    Article  Google Scholar 

  2. Wang, X. et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett. 241, 699–706 (2007).

    Google Scholar 

  3. Kutzbach, J. E., Liu, X., Liu, Z. & Chen, G. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim. Dyn. 30, 567–579 (2008).

    Article  Google Scholar 

  4. Wang, X. et al. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat. Sci. Rev. 25, 3391–3403 (2006).

    Article  Google Scholar 

  5. Seltzer, G., Rodbell, D. & Burns, S. J. Isotopic evidence for Late Glacial and Holocene hydrologic change in tropical South America. Geology 28, 35–38 (2000).

    Article  Google Scholar 

  6. Cruz, F. W. et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 63–66 (2005).

    Article  Google Scholar 

  7. Cruz, F. W. et al. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 71, 2250–2263 (2007).

    Article  Google Scholar 

  8. van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G. & Kroon, D. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett. 275, 54–60 (2008).

    Article  Google Scholar 

  9. Nobre, P. & Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 9, 2464–2479 (1996).

    Article  Google Scholar 

  10. Hastenrath, S. Interannual and longer-term variability of upper-air circulation in the Northeast Brazil—Tropical Atlantic Sector. J. Geophys. Res. 105, 7327–7335 (2000).

    Article  Google Scholar 

  11. Claussen, M., Ganopolski, A., Brovkin, V., Gerstengarbe, F.-W. & Werner, P. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events. Clim. Dyn. 21, 361–370 (2003).

    Article  Google Scholar 

  12. Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last glacial marine deposits off northeastern Brazil. Quat. Res. 50, 157–166 (1998).

    Article  Google Scholar 

  13. Peterson, L. C., Haug, G. H., Hughen, K. A. & Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  Google Scholar 

  14. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–1308 (2001).

    Article  Google Scholar 

  15. Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004).

    Article  Google Scholar 

  16. Rodwell, M. J. & Hoskins, B. J. Subtropical anticyclones and summer monsoons. J. Clim. 14, 3192–3211 (2001).

    Article  Google Scholar 

  17. Lenters, J. D. & Cook, K. H. On the origin of the Bolivian High and related circulation features of the South American climate. J. Atmos. Sci. 54, 656–677 (1997).

    Article  Google Scholar 

  18. Chen, T. C., Weng, S. P. & Schubert, S. Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian High-Nordeste Low system. J. Atmos. Sci. 56, 2081–2100 (1999).

    Article  Google Scholar 

  19. Hagos, S. M. & Cook, K. H. Influence of surface processes over Africa on the Atlantic marine ITCZ and South American precipitation. J. Clim. 18, 4993–5010 (2005).

    Article  Google Scholar 

  20. Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D. & Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 248, 494–506 (2006).

    Google Scholar 

  21. Vuille, M., Bradley, R. S., Werner, M., Healy, R. & Keimig, F. Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res. 108, 4174 (2003).

    Article  Google Scholar 

  22. Sifeddine, A. et al. A 21000 cal years paleoclimatic record from Caço Lake, Northern, Brazil: Evidence from sedimentary and pollen analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 189, 25–34 (2003).

    Article  Google Scholar 

  23. Jaeschke, A., Rühlemann, C., Arz, H., Heil, G. & Lohmann, G. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography. 22, PA4206 (2007).

    Article  Google Scholar 

  24. Wang, X., Edwards, R. L., Auler, A. S., Cheng, H. & Ito, E. Millennial-scale interhemispheric asymmetry of low-latitude precipitation: Speleothem evidence and possible high-latitude forcing. Geophys. Monogr. Ser. 173, 279–293 (2007b).

    Google Scholar 

  25. Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. J. Geophys. Res. 103, 16871–16896 (1998).

    Article  Google Scholar 

  26. Thompson, L. G. et al. Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 46–50 (1995).

    Article  Google Scholar 

  27. Vuille, M. & Werner, M. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability—observations and model results. Clim. Dyn. 25, 401–413 (2005).

    Article  Google Scholar 

  28. Harrison, S. P. et al. Mid-Holocene climates of the Americas: A dynamical response to changed seasonality. Clim. Dyn. 20, 663–688 (2003).

    Article  Google Scholar 

  29. Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L. & Shields, C. Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Clim. 16, 2472–2490 (2003).

    Article  Google Scholar 

  30. Liu, Z., Harrison, S. P. & Kutzbach, J. E. Otto-Bliesner, Global monsoons in the mid-Holocene and oceanic feedback. Clim. Dyn. 22, 157–182 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. H. Hollanda, L. Mancine and A. Barros for all the support during the stable isotope data acquisition at the University of São Paulo. We are grateful to IBAMA/C. Mendes for permission to collect stalagmite samples, and in particular to J. Cruz for helping us in the field. This work was supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Brazil (grant to F.W.C and I.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco W. Cruz.

Supplementary information

Supplementary Table S1

Supplementary Information (PDF 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, F., Vuille, M., Burns, S. et al. Orbitally driven east–west antiphasing of South American precipitation. Nature Geosci 2, 210–214 (2009). https://doi.org/10.1038/ngeo444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing