Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of intermediate-depth earthquakes by self-localizing thermal runaway

Abstract

Intermediate-depth (50–300 km) earthquakes commonly occur along convergent plate margins but their causes remain unclear. In the absence of pore-fluid pressures that are sufficiently high to counter the confining pressure in such settings, brittle failure is unlikely. In such conditions, the rocks could fail by the mechanism of progressively self-localizing thermal runaway1, whereby ductile deformation in shear zones leads to heating, thermal softening and weakening of rock1,2,3. Here we test this hypothesis by focusing on fault veins of glassy rock (pseudotachylyte) formed by fast melting during a seismic event, as well as associated ductile shear zones that occur in a Precambrian terrane in Norway. Our field observations suggest that the pseudotachylytes as well as shear zones have a single-event deformation history, and we also document mineralogical evidence for interaction of the rocks with external fluids. Using fully coupled thermal and viscoelastic models, we demonstrate that the simultaneous occurrence of brittle and ductile deformation patterns observed in the field can be explained by self-localizing thermal runaway at differential stresses lower than those required for brittle failure. Our results suggest that by perturbing rock properties, weakening by hydration also plays a key role in shear zone formation and seismic failure; however, thermal runaway enables the rocks to fail in the absence of a free fluid phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of field observations with the numerical simulations.
Figure 2: Microstructures of a hydrous shear zone and a hydrous pseudotachylyte.
Figure 3: Comparison of failure envelopes of SLTR (coloured lines) and Byerlee brittle failure (black line).

Similar content being viewed by others

References

  1. Braeck, S. & Podladchikov, Y. Y. Spontaneous thermal runaway as an ultimate failure mechanism of materials. Phys. Rev. Lett. 98, 095504 (2007).

    Article  Google Scholar 

  2. Wright, T. W. Cambridge Monographs on Mechanics 241 (Cambridge Univ. Press, 2002).

    Google Scholar 

  3. Kelemen, P. & Hirth, G. A periodic shear-heating mechanism for intermediate-depth earthquake in the mantle. Nature 446, 787–790 (2007).

    Article  Google Scholar 

  4. Green, H. W. & Houston, H. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci. 23, 169–213 (1995).

    Article  Google Scholar 

  5. Kirby, S. H., Engdahl, E. R. & Denlinger, R. P. in Subduction Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P) 195–214 (Geophysical Monograph 96, American Geophysical Union, 1996).

    Google Scholar 

  6. Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, 1–16 (2003).

    Google Scholar 

  7. Ogawa, M. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. J. Geophys. Res. 92, 13801–13810 (1987).

    Article  Google Scholar 

  8. Sibson, R. H. & Troy, V. G. The habitat of fault-generated pseudotachylyte: Presence versus absence of friction-melts. Geophys. Monogr. Ser. 170, 153–166 (2006).

    Google Scholar 

  9. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G. & Shimamoto, T. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311, 647–649 (2006).

    Article  Google Scholar 

  10. Hobbs, B. E., Ord, A. & Teyssier, C. Earthquakes in the ductile regime? Pure Appl. Geophys. 124, 309–336 (1986).

    Article  Google Scholar 

  11. Obata, M. & Karato, S.-I. Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy. Tectonophysics 242, 313–328 (1995).

    Article  Google Scholar 

  12. Austrheim, H. & Boundy, T. M. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science 265, 82–83 (1994).

    Article  Google Scholar 

  13. Lund, M. G. & Austrheim, H. High-pressure metamorphism and deep-crustal seismicity: Evidence from contemporaneous formation of pseudotachylytes and eclogite-facies coronas. Tectonophysics 372, 59–83 (2003).

    Article  Google Scholar 

  14. Steltenpohl, M. G., Kassos, G. & Andresen, A. Retrograded eclogite-facies pseudotachylytes as deep-crustal paleoseismic faults within continental basement of Lofoten, north Norway. Geosphere 2, 61–72 (2006).

    Article  Google Scholar 

  15. Austrheim, H. & Andersen, T. B. Pseudotachylytes from Corsica: Fossil earthquakes from a subduction complex. Terra Nova 16, 193–197 (2004).

    Article  Google Scholar 

  16. John, T. & Schenk, V. Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite-facies pseudotachylytes. Geology 34, 557–560 (2006).

    Article  Google Scholar 

  17. Andersen, T. B., Mair, K., Austrheim, H., Podladchikov, Y. Y. & Vrijmoed, J. C. Stress-release in exhumed intermediate-deep earthquakes determined from ultramafic pseudotachylyte. Geology 36, 995–998 (2008).

    Article  Google Scholar 

  18. Labrousse, L. et al. Pressure–temperature–time–deformation history of the exhumation of ultra-high-pressure rocks in the Western Gneiss Region, Norway. Geol. Soc. Am. Spec. Paper 380, 155–183 (2004).

    Google Scholar 

  19. Austrheim, H. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett. 81, 221–232 (1987).

    Article  Google Scholar 

  20. Karato, S.-I. & Jung, H. Effects of pressure on high-temperature dislocation creep in olivine. Phil. Mag. 83, 401–414 (2003).

    Article  Google Scholar 

  21. Kohlstedt, D. L. in Water in Nominally Anhydrous Minerals (eds Keppler, H. & Smyth, J. R.) 377–396 (Reviews in Mineralogy and Geochemistry, Vol. 62, 2006).

    Book  Google Scholar 

  22. Hacker, B. R. in Subduction Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P) 337–346 (Geophysical Monograph 96, American Geophysical Union, 1996).

    Google Scholar 

  23. Yuan, X. et al. Subduction and collision processes in the central Andes constrained by converted seismic phases. Nature 408, 958–961 (2000).

    Article  Google Scholar 

  24. Wayte, G. J., Worden, R. H., Rubie, D. C. & Droop, G. T. R. A TEM study of disequilibrium plagioclase breakdown at high pressure; the role of infiltrating fluid. Contrib. Mineral. Petrol. 101, 426–437 (1989).

    Article  Google Scholar 

  25. Rondenay, S., Abers, G. A. & van Keken, P. E. Seismic imaging of subduction zone metamorphism. Geology 36, 275–278 (2008).

    Article  Google Scholar 

  26. Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).

    Article  Google Scholar 

  27. Li, L., Weidner, D., Raterron, P., Chen, J. & Vaughan, M. Stress measurements of deforming olivine at high pressure. Phys. Earth Planet. Inter. 143, 357–367 (2004).

    Article  Google Scholar 

  28. Boettcher, M. S., Hirth, G. & Evans, B. Olivine friction at the base of oceanic seismogenic zones. J. Geophys. Res. 112, B01205 (2007).

    Article  Google Scholar 

  29. Renshaw, C. E. & Schulson, E. M. Limits on rock strength under high confinement. Earth Planet. Sci. Lett. 258, 307–314 (2007).

    Article  Google Scholar 

  30. Kanamori, H. Mechanics of earthquakes. Annu. Rev. Earth Planet. Sci. 22, 207–237 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions at PGP, particularly with S. Braeck, and proof reading by P. Meakin., G. Hirth and C. Marone provided constructive and helpful reviews. This study was supported by a Center of Excellence grant to PGP from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in collecting the data, interpretation of results and developing the model. T.J., T.B.A. and H.A. focused on the fieldwork, sampling and petrology, and T.J., S.M., L.H.R. and Y.Y.P. focused on the numerical simulations.

Corresponding author

Correspondence to Timm John.

Supplementary information

Supplementary Information, Table S1

Supplementary Information (PDF 1541 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, T., Medvedev, S., Rüpke, L. et al. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nature Geosci 2, 137–140 (2009). https://doi.org/10.1038/ngeo419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing