Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergence of sprite streamers from screening-ionization waves in the lower ionosphere

Abstract

Sprite discharges above thunderclouds at altitudes of 40–90 km (refs 1, 2, 3, 4, 5) are usually created by a strong positive cloud-to-ground lightning flash6. Sometimes these sprite discharges emerge from a visible halo5,7,8,9, and during the first stage they always propagate downwards and branch on their way5,7,9,10,11. Modelling efforts have been restricted to conditions of non-ionized air of constant density and show double-headed sprites12 or sprites starting from metal electrodes, but they do not explain why observations exclusively record sprites that propagate downwards. Here we present simulations with a numerical discharge model on a non-uniform, dynamically adapted computational grid13 to capture the wide range of emerging spatial scales, and we use realistic air and electron densities that vary with altitude. Our model shows a downward-propagating screening-ionization wave in the lower ionosphere that sharpens and collapses into a sprite streamer as it propagates farther down. Streamer velocity, diameter and length until branching agree with observations9 within measuring accuracy. We speculate that sprites generically emerge through the collapse of a wide screening-ionization wave into a sprite streamer, although this wave is only sometimes visible as a luminous halo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The simulated electron density develops from sprite halo to primary sprite streamer.
Figure 2: Optical observations show a faint halo followed by a downward-propagating bright filament.
Figure 3: The reduced electric field E/Ek and the electron density ne develop on the axis of the simulation.

Similar content being viewed by others

References

  1. Wilson, C. T. R. The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. Lond. 37, 32D–37D (1925).

    Article  Google Scholar 

  2. Franz, R. C., Nemzek, R. J. & Winckler, J. R. Television image of a large upward electrical discharge above a thunderstorm system. Science 249, 48–51 (1990).

    Article  Google Scholar 

  3. Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L. & Heavner, M. J. Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys. Res. Lett. 22, 1205–1208 (1995).

    Article  Google Scholar 

  4. Neubert, T. et al. Recent results from studies of electric discharges in the mesosphere. Surv. Geophys. 14, 71–137 (2008).

    Article  Google Scholar 

  5. Stenbaek-Nielsen, H. C. & McHarg, M. G. High time-resolution sprite imaging: Observations and implications. J. Phys. D 41, 234009 (2008).

    Article  Google Scholar 

  6. Huang, E. et al. Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res. 104, 16943–16964 (1999).

    Article  Google Scholar 

  7. Barrington-Leigh, C. P., Inan, U. S. & Stanley, M. Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. 106, 1741–1750 (2001).

    Article  Google Scholar 

  8. Pasko, V. P. & Stenbaek-Nielsen, H. C. Diffuse and streamer regions of sprites. Geophys. Res. Lett. 29, 1440 (2002).

    Article  Google Scholar 

  9. Cummer, S. A. et al. Submillisecond imaging of sprite development and structure. Geophys. Res. Lett. 33, L04104 (2006).

    Article  Google Scholar 

  10. Stanley, M. et al. High speed video of initial sprite development. Geophys. Res. Lett. 26, 3201–3204 (1999).

    Article  Google Scholar 

  11. Stenbaek-Nielsen, H. C., McHarg, M. G., Kanmae, T. & Sentman, D. D. Observed emission rates in sprite streamer heads. Geophys. Res. Lett. 34, L11105 (2007).

    Article  Google Scholar 

  12. Liu, N. & Pasko, V. P. Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J. Geophys. Res. 109, A04301 (2004).

    Google Scholar 

  13. Montijn, C., Hundsdorfer, W. & Ebert, U. An adaptive grid refinement strategy for the simulation of negative streamers. J. Comput. Phys. 219, 801–835 (2006).

    Article  Google Scholar 

  14. Adachi, T. et al. Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment. J. Phys. D 41, 234010 (2008).

    Article  Google Scholar 

  15. Gerken, E. A., Inan, U. S. & Barrington-Leigh, C. P. Telescopic imaging of sprites. Geophys. Res. Lett. 27, 2637–2640 (2000).

    Article  Google Scholar 

  16. McHarg, M. G., Stenbaek-Nielsen, H. C. & Kammae, T. Observations of streamer formation in sprites. Geophys. Res. Lett. 34, L06804 (2007).

    Article  Google Scholar 

  17. Pasko, V. P., Inan, U. S., Bell, T. F. & Taranenko, Y. N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529–4561 (1997).

    Article  Google Scholar 

  18. Pasko, V. P. Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges. Plasma Sources Sci. Technol. 16, S13–S29 (2007).

    Article  Google Scholar 

  19. Ebert, U. et al. The multiscale nature of streamers. Plasma Sources Sci. Technol. 15, S118–S129 (2006).

    Article  Google Scholar 

  20. Briels, T. M. P., van Veldhuizen, E. M. & Ebert, U. Positive streamers in air and nitrogen of varying density: Experiments on similarity laws. J. Phys. D 41, 234008 (2008).

    Article  Google Scholar 

  21. Luque, A., Ebert, U. & Hundsdorfer, W. Interaction of streamer discharges in air and other oxygen–nitrogen mixtures. Phys. Rev. Lett. 101, 075005 (2008).

    Article  Google Scholar 

  22. Pasko, V. P., Inan, U. S. & Bell, T. F. Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields. Geophys. Res. Lett. 23, 649–652 (1996).

    Article  Google Scholar 

  23. Luque, A., Ebert, U., Montijn, C. & Hundsdorfer, W. Photoionization in negative streamers: Fast computations and two propagation modes. Appl. Phys. Lett. 90, 081501 (2007).

    Article  Google Scholar 

  24. Hu, W., Cummer, S. A., Lyons, W. A. & Nelson, T. E. Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett. 29, 1279 (2002).

    Google Scholar 

  25. Hu, W., Cummer, S. A. & Lyons, W. A. Testing sprite initiation theory using lightning measurements and modelled electromagnetic fields. J. Geophys. Res. 112, D13115 (2007).

    Google Scholar 

  26. Hiraki, Y. & Fukunishi, H. Theoretical criterion of charge moment change by lightning for initiation of sprites. J. Geophys. Res. 111, A11305 (2007).

    Article  Google Scholar 

  27. Luque, A., Ratushnaya, V. & Ebert, U. Positive and negative streamers in ambient air: Modelling evolution and velocities. J. Phys. D 41, 234005 (2008).

    Article  Google Scholar 

  28. Raizer, Y. P., Milikh, G. M., Shneider, M. N. & Novakovski, S. V. Long streamers in the upper atmosphere above thundercloud. J. Phys. D 31, 3255–3264 (1998).

    Article  Google Scholar 

  29. Briels, T. M. P., Kos, J., van Veldhuizen, E. M. & Ebert, U. Circuit dependence of the diameter of pulsed positive streamers in air. J. Phys. D 39, 234008 (2006).

    Article  Google Scholar 

  30. Marshall, R. A., Inan, U. S. & Chevalier, T. W. Early VLF perturbations caused by lightning EMP-driven dissociative attachment. Geophys. Res. Lett. 35, L21807 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

A.L. acknowledges financial support by STW-projects 06501 and 11018 of The Netherlands’ Organization for Scientific Research (NWO). We thank E. Williams for valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All simulations were carried out by A.L., based on numerical methods developed earlier by C. Montijn et al. (ref. 13) and on his own further developments21,23. The problem of sprite streamer propagation in varying air density was posed by U.E.; A.L. included the electron density variation when approaching the ionosphere, and hence effectively the halo part. Evaluations, interpretations and literature studies were carried out together.

Corresponding authors

Correspondence to Alejandro Luque or Ute Ebert.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1332 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1547 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, A., Ebert, U. Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nature Geosci 2, 757–760 (2009). https://doi.org/10.1038/ngeo662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing