Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deep slab hydration induced by bending-related variations in tectonic pressure

Abstract

Bending of oceanic plates at subduction zones results in extension and widespread normal faulting1 in the upper, brittle part of the slab2,3. Detailed seismic surveys at trenches reveal that this part of the oceanic plate could be pervasively hydrated for several kilometres below the crust–mantle boundary4,5,6,7. Similarly, heat-flow surveys indicate active fluid circulation within the slab8. Yet, the mechanisms that enable fluids to percolate to such depths in spite of their natural buoyancy remain unclear. Here we use two-dimensional numerical experiments to show that stress changes induced by the bending oceanic plate produce subhydrostatic or even negative pressure gradients along normal faults, favouring downward pumping of fluids. The fluids then react with the crust and mantle surrounding the faults and are stored in the form of hydrous minerals. We suggest that this process is the dominant mechanism of deep slab hydration, although it may be locally aided by the enhancement in porosity due to prefailure dilatancy9, pre-existing cracks10 and migrating fluid-filled cracks11. Our results have implications for the transport of water into the deeper parts of the mantle12, and for further clarifying the seismic anisotropy of slabs13.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermomechanical two-dimensional model of a spontaneously bending oceanic plate.
Figure 2: Dynamics of deep slab hydration.

Similar content being viewed by others

References

  1. Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991).

    Article  Google Scholar 

  2. Ranero, C. R., Phipps Morgan, J. & Reichert, C. Bending-realted faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  3. Ranero, C. R., Villaseñor, A., Phipps Morgan, J. & Weinrebe, W. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosys. 6, Q12002 (2005).

    Article  Google Scholar 

  4. Ranero, C. R. & Sallares, V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the North Chile trench. Geology 32, 549–554 (2004).

    Article  Google Scholar 

  5. Grevemeyer, I., Ranero, C. R., Flueh, E. R., Kläschen, D. & Bialas, J. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet. Sci. Lett. 258, 528–542 (2007).

    Article  Google Scholar 

  6. Contreras-Reyes, E., Grevemeyer, I., Flueh, E. R. & Reichert, C. Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at 38 S. J. Geophys. Res. 113, B07303 (2008).

    Article  Google Scholar 

  7. Tilmann, F. J., Grevemeyer, I., Flueh, E. R., Dahm, T. & Gossler, J. Seismicity in the outer rise offshore southern Chile: Indication of fluid effects in crust and mantle. Earth Planet. Sci. Lett. 269, 41–55 (2008).

    Article  Google Scholar 

  8. Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L., Villinger, H. W., Ranero, C. R. & Reichert, C. Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile. Earth Planet. Sci. Lett. 236, 238–248 (2005).

    Article  Google Scholar 

  9. Sibson, R. H. in Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (ed. Parnell, J.) 69–84 (Geol. Soc. Spec. Publ. Vol. 78, 1994).

    Google Scholar 

  10. Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? J. Geophys. Res. 112, B05408 (2007).

    Article  Google Scholar 

  11. Phipps Morgan, J. & Holtzman, B. K. Vug-waves: A mechanism for coupled rock deformation and fluid migration. Geochem. Geophys. Geosys. 6, Q08002 (2005).

    Article  Google Scholar 

  12. Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143–144, 255–269 (2004).

    Article  Google Scholar 

  13. Faccenda, M., Burlini, L., Gerya, T. V. & Mainprice, D. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097–1100 (2008).

    Article  Google Scholar 

  14. Johnson, H. P. & Pruis, M. J. Fluxes of fluid and heat from the oceanic crustal reservoir. Earth Planet. Sci. Lett. 216, 565–574 (2003).

    Article  Google Scholar 

  15. Mancktelow, N. Tectonic pressure: Theoretical concepts and modelled examples. Lithos 103, 149–177 (2008).

    Article  Google Scholar 

  16. Katz, R., Spiegelman, M. & Holtzman, B. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676–679 (2006).

    Article  Google Scholar 

  17. Manning, C. E. & Ingebritsen, S. E. Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999).

    Article  Google Scholar 

  18. Mitchell, T. M. & Faulkner, D. R. Experimental measurements of permeability evolution during triaxal compression of initially intact crystalline rocks and implications for fluid flow in fault zone. J. Geophys. Res. 113, B11412 (2008).

    Article  Google Scholar 

  19. Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30, 1035–1038 (2002).

    Article  Google Scholar 

  20. Brudzinski, M. R., Thurber, C. H., Hacker, B. R. & Engdahl, E. R. Global prevalence of double Benioff zones. Science 316, 1472–1474 (2007).

    Article  Google Scholar 

  21. Peacock, S. M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 299–302 (2001).

    Article  Google Scholar 

  22. Yamasaki, T. & Seno, T. Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res. 108, 2212 (2003).

    Article  Google Scholar 

  23. Nesbitt, B. E. & Muehlenbachs, K. Origins and movement of fluids during deformation and metamorphism in the Canadian Cordillera. Science 245, 733–736 (1989).

    Article  Google Scholar 

  24. McLellan, J. G., Oliver, N. H. S. & Schaubs, P. M. Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores. J. Struct. Geol. 26, 1157–1171 (2004).

    Article  Google Scholar 

  25. Sheldon, H. A. & Ord, A. Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure: Implications for fluid flow and mineralization. Geofluids 5, 272–288 (2005).

    Article  Google Scholar 

  26. Gerya, T. V. & Yuen, D. A. Robust characteristic method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007).

    Article  Google Scholar 

  27. Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. & Muller, R. D. Catastrophic initiation of subduction following forced convergence across fractures zones. Earth Planet. Sci. Lett. 212, 15–30 (2003).

    Article  Google Scholar 

  28. Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. Why is terrestrial subduction one-sided? Geology 36, 43–46 (2008).

    Article  Google Scholar 

  29. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  30. Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by SNF Research Grants 200021-113672/1, 200021-113672/1 and 200021-116381/1, ETH Research Grants TH-12/05-3 and TH-0807-3 and ETH account 0-12422-97. M.F. thanks N. Mancktelow for discussion about tectonic pressure effects on fluid flow in subducting slabs. M. Spiegelman contributed to clarify the basic concepts of this work. D. May improved the English of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.F. designed the study, carried out and analysed the numerical experiments and wrote the paper. T.V.G. developed the numerical code and analysed the numerical experiments. L.B. contributed to the concept development. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Manuele Faccenda.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faccenda, M., Gerya, T. & Burlini, L. Deep slab hydration induced by bending-related variations in tectonic pressure. Nature Geosci 2, 790–793 (2009). https://doi.org/10.1038/ngeo656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing