Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cycling and redox state of nitrogen in the Archaean ocean

Abstract

Organisms that produce oxygen through photosynthesis existed during the late Archaean eon, about 2,500 million years ago, but controversial evidence suggests that they may have evolved several hundred million years earlier. Oxygen is expected to react with oceanic nitrogen, altering its redox state. The reaction leaves a signature in the isotopic composition of the nitrogen bound in organic matter. Here we present a record of the nitrogen isotopic composition of kerogen extracted from minimally altered shales from the Campbellrand–Malmani platform in South Africa. Between the Palaeo–Archaean and about 2,670 million years ago, the δ15N values of the kerogen rose by about 2‰. We interpret this increase as an indication of the onset of coupled nitrification and denitrification or anammox reactions in the surface oceans, which require the presence of free oxygen. A second increase in nitrogen isotopic composition around 2,520 million years ago implies instability of the N cycle with loss of fixed N. This evidence for available oxygen in the oceans occurs at least 200 million years before geochemical indications of the presence of significant levels of atmospheric oxygen. We suggest that coupled nitrification and denitrification drove the loss of fixed inorganic nitrogen, leading to nitrogen limitation, and conclude that the low levels of biologically available nitrogen limited the growth of oxygen-producing plankton, delaying the accumulation of oxygen in the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed late Archaean nitrogen cycle.
Figure 2: GKP01 δ15N data.
Figure 3: Secular trends in δ15Nkerogen during the Precambrian time.

Similar content being viewed by others

References

  1. Berner, R. A. Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology 34, 413–415 (2006).

    Article  Google Scholar 

  2. Berner, R. A. et al. Isotope fractionation and atmospheric oxygen: Implications for phanerozoic O2 evolution. Science 287, 1630–1633 (2000).

    Article  Google Scholar 

  3. Brocks, J. J., Buick, R., Logan, G. A. & Summons, R. E. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta 67, 4289–4319 (2003).

    Article  Google Scholar 

  4. Rashby, S., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).

    Article  Google Scholar 

  5. Kirschvink, J. L. & Kopp, R. E. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: The case for a late origin of photosystem II. Phil. Trans. R. Soc. B 363, 2755–2765 (2008).

    Article  Google Scholar 

  6. Falkowski, P. G. & Knoll, A. H. (eds) The Evolution of Aquatic Photoautotrophs (Academic, 2007).

  7. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).

    Article  Google Scholar 

  8. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  Google Scholar 

  9. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  Google Scholar 

  10. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen. Am. J. Sci. 298, 621–672 (1998).

    Article  Google Scholar 

  11. Mather, T. A. et al. Nitric acid from volcanoes. Earth Planet. Sci. Lett. 218, 17–30 (2004).

    Article  Google Scholar 

  12. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  13. Schramm, A. In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments. Geomicrobiol. J. 20, 313–333 (2002).

    Article  Google Scholar 

  14. Arp, D. J., Chain, P. S. G. & Klotz, M. G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61, 503–528 (2007).

    Article  Google Scholar 

  15. Fennel, K., Follows, M. & Falkowski, P. G. The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am. J. Sci. 305, 526–545 (2005).

    Article  Google Scholar 

  16. Cline, J. D. & Kaplan, I. R. Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Mar. Chem. 3, 271–299 (1975).

    Article  Google Scholar 

  17. Jenkyns, H. C., Grocke, D. R. & Hesselbo, S. P. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16, 593–603 (2001).

    Article  Google Scholar 

  18. Falkowski, P. G. & Godfrey, L. V. Electrons, life and the evolution of Earth’s oxygen cycle. Phil. Trans. R. Soc. B 363, 2705–2716 (2008).

    Article  Google Scholar 

  19. Quan, T. M., van de Schootbrugge, B., Field, M. P., Rosenthal, Y. & Falkowski, P. G. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic–Jurassic boundary. Glob. Biogeochem. Cycles 22, GB2014 (2008).

    Article  Google Scholar 

  20. Schröder, S., Lacassie, J. P. & Beukes, N. J. Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean-Paleoproterozoic, South Africa). S. Afr. J. Geol. 109, 23–45 (2006).

    Article  Google Scholar 

  21. Knoll, A. H. & Beukes, N. J. Introduction: Initial investigations of a Neoarchean shelf margin-basin transition (Transvaal Supergroup, South Africa). Precambr. Res. 169, 1–14 (2009).

    Article  Google Scholar 

  22. Garvin, J., Buick, R., Anbar, A., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the Latest Archean. Science 323, 1045–1048 (2009).

    Article  Google Scholar 

  23. Gillaizeau, B., Behar, F., Derenne, S. & Largeau, C. Nitrogen fate during laboratory maturation of a type I kerogen (Oligocene, Turkey) and related algaenan: Nitrogen mass balances and timing of production versus other gases. Energy Fuels 11, 1237–1249 (1997).

    Article  Google Scholar 

  24. Aycard, M. et al. Formation pathways of proto-kerogens in Holocene sediments of the upwelling influence Cariaco Trench, Venezuela. Org. Geochem. 34, 701–718 (2003).

    Article  Google Scholar 

  25. Qian, Y. et al. Suspended particulate organic matter (SPOM) in Gulf of Mexico estuaries: Compound specific isotope analysis and plant pigment compositions. Org. Geochem. 24, 875–888 (1996).

    Article  Google Scholar 

  26. Ohkouchi, N., Kashiyama, Y., Kuroda, J., Ogawa, N. O. & Kitazato, H. The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2. Biogeosciences 3, 467–478 (2006).

    Article  Google Scholar 

  27. Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y. & Varela, R. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Glob. Biogeochem. Cycles 18, GB3001 (2004).

    Google Scholar 

  28. Boudou, J.-P. et al. Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 72, 1199–1221 (2008).

    Article  Google Scholar 

  29. Schimmelmann, A. & Lis, G. P. Nitrogen isotope exchange during maturation of organic matter. Org. Geochem. (in the press).

  30. Honma, H. & Itihara, Y. Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochim. Cosmochim. Acta 45, 983–988 (1981).

    Article  Google Scholar 

  31. Waser, N. A. D., Harrison, P. J., Nielsen, B., Calvert, S. E. & Turpin, D. H. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol. Oceanogr. 43, 215–224 (1998).

    Article  Google Scholar 

  32. Hayes, J. M., Kaplan, I. R. & Wedeking, K. M. in Earth’s Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 93–134 (Princeton Univ. Press, 1983).

    Google Scholar 

  33. Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambr. Res. 96, 63–82 (1999).

    Article  Google Scholar 

  34. Yamaguchi, K. Geochemistry of Archean-Paleoproterozoic Black Shales: Early Evolution of the Atmosphere, Oceans, and Biosphere (Pennsylvania State Univ., 2002).

    Google Scholar 

  35. Haendel, D., Mühle, K., Nitzsche, H. M., Stiehl, G. & Wand, U. Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta 50, 749–758 (1986).

    Article  Google Scholar 

  36. Waldbauer, J. R., Sherman, L. S., Sumner, D. Y. & Summons, R. E. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambr. Res. 169, 28–47 (2008).

    Article  Google Scholar 

  37. Gutzmer, J. & Beukes, N. High-grade manganese ores in the Kalahari manganese field: Characterization and dating of the ore forming events: Unpublished Report. 221 (Rand Afrikaans Univ., 1998).

  38. Martin, D. M., Clendenin, C. W., Krapez, B. & Mcnaughton, N. J. Tectonic and geochronological constraints on late Archean and Paleoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara Cratons. J. Geol. Soc. 155, 311–322 (1998).

    Article  Google Scholar 

  39. Sumner, D. Y. & Bowring, S. A. U–Pb geochronological constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambr. Res. 79, 25–35 (1996).

    Article  Google Scholar 

  40. Altermann, W. & Nelson, D. R. Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments. Sedim. Geol. 120, 225–256 (1998).

    Article  Google Scholar 

  41. Ono, S., Beukes, N. J. & Rumble, D. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambr. Res. 169, 48–57 (2009).

    Article  Google Scholar 

  42. Kump, L. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  43. Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  44. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  Google Scholar 

  45. Miyano, T. & Beukes, N. J. Phase relations of stilpomelane, ferriannite, and riebeckite in very low-grade metamorphosed iron-formations. Trans. Geol. Soc. S. Afr. 87, 111–124 (1984).

    Google Scholar 

  46. Cornell, D. H., Schutte, S. S. & Eglington, B. L. The Ongeluk basaltic andesite formation in Griqualand West, South Africa: Submarine alteration in a 2222 Ma Proterozoic sea. Precambr. Res. 79, 101–123 (1996).

    Article  Google Scholar 

  47. Gutzmer, J. et al. Ancient sub-seafloor alteration of basaltic andesites of the Ongeluk Formation, South Africa: Implications for the chemistry of Paleoproterozoic seawater. Chem. Geol. 201, 37–53 (2003).

    Article  Google Scholar 

  48. Silva, J. A. & Bremner, J. M. Determination and isotope-ratio analysis of different forms of nitrogen in soil: 5. Fixed ammonium. Proc. Soil Sci. Soc. Am. 30, 587–594 (1966).

    Article  Google Scholar 

  49. McKirdy, D. M. & Powell, T. G. Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: New evidence from Australia. Geology 2, 591–595 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Agouron Foundation and the NASA Exobiology program under grant NNX7AK14G. We thank G. Bebout and L. Li for their help in analysing samples, and W. Fischer, A. Knoll, E. Stolper, N. Beukes and J. Kirschvink for discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

The research focus was identified by P.G.F. and L.V.G. L.V.G. designed and carried out the analytical protocols. The article was written by L.V.G. and P.G.F.

Corresponding author

Correspondence to Linda V. Godfrey.

Supplementary information

Supplementary Information

Supplementary Information (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, L., Falkowski, P. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci 2, 725–729 (2009). https://doi.org/10.1038/ngeo633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing