Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Virtual seismometers in the subsurface of the Earth from seismic interferometry

Abstract

The Earth’s interior can be imaged by analysing the records of propagating seismic waves. However, the global array of permanent seismometers that record seismic energy is confined almost exclusively to land-based sites. This limits the resolution of subsurface images, and results in relatively few local measurements from areas of great geological and tectonic interest (for example, the mid-ocean ridges and the Tibetan plateau)1. Here we use an unconventional form of seismic interferometry2,3,4,5 to turn earthquakes into virtual seismometers located beneath the Earth’s surface. Seismic waves generated by one earthquake lead to transient strain in the subsurface at other locations around the globe. This strain can be quantified from seismograms of independent earthquakes that have occurred in those locations. This technique can therefore provide information on the subsurface strain in regions of the globe that lack instrumental networks. Applying our method to earthquakes in Alaska and the southwestern United States, we show that the information that can be obtained from these earthquakes about other such events is consistent with that provided by instrumental seismometers. Our approach may allow real-time, non-invasive, subsurface seismic strain monitoring, particularly in areas remote from instrumental networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of seismic interferometric methods.
Figure 2: Comparison of real and virtual recordings of the Sichuan earthquake.
Figure 3: South-west USA location map.
Figure 4: Comparison of real and virtual recordings in California.

Similar content being viewed by others

References

  1. Bijwaard, H. & Spakman, W. Non-linear global P-wave tomography by iterated linearized inversion. Geophys. J. Int. 141, 71–82 (2000).

    Article  Google Scholar 

  2. Campillo, M. & Paul, A. Long-range correlations in the diffuse seismic coda. Science 299, 547–549 (2003).

    Article  Google Scholar 

  3. Shapiro, N. & Campillo, M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31, L07614 (2004).

    Article  Google Scholar 

  4. Shapiro, N., Campillo, M., Stehly, L. & Ritzwoller, M. High-resolution surface-wave tomography from ambient seismic noise. Science 307, 1615–1617 (2005).

    Article  Google Scholar 

  5. Gertstoft, P., Sabra, K. G., Roux, P., Kuperman, W. A. & Fehler, M. C. Green’s functions extraction and surface-wave tomography from microseisms in southern California. Geophysics 71, SI23–SI31 (2006).

    Article  Google Scholar 

  6. Claerbout, J. F. Synthesis of a layered medium from its acoustic transmission response. Geophysics 33, 264–269 (1968).

    Article  Google Scholar 

  7. Wapenaar, K. Synthesis of an inhomogeneous medium from its acoustic transmission response. Geophysics 68, 1756–1759 (2003).

    Article  Google Scholar 

  8. Wapenaar, K. & Fokkema, J. Reciprocity theorems for diffusion, flow, and waves. J. Appl. Mech. 71, 145–150 (2004).

    Article  Google Scholar 

  9. Wapenaar, K., Thorbecke, J. & Draganov, D. Relations between reflection and transmission responses of three-dimensional inhomogeneous media. Geophys. J. Int. 156, 179–194 (2004).

    Article  Google Scholar 

  10. Wapenaar, K. & Fokkema, J. Green’s function representations for seismic interferometry. Geophysics 71, SI33–SI44 (2006).

    Article  Google Scholar 

  11. Slob, E., Draganov, D. & Wapenaar, K. Interferometric electromagnetic Green’s functions representations using propagation invariants. Geophys. J. Int. 169, 60–80 (2007).

    Article  Google Scholar 

  12. Slob, E. & Wapenaar, K. Electromagnetic Green’s functions retrieval by cross-correlation and cross-convolution in media with losses. Geophys. Res. Lett. 34, L05307 (2007).

    Article  Google Scholar 

  13. Snieder, R. Extracting the Green’s function of attenuating heterogeneous media from uncorrelated waves. J. Acoust. Soc. Am. 121, 2637–2643 (2007).

    Article  Google Scholar 

  14. Snieder, R., Wapenaar, K. & Wegler, U. Unified Green’s function retrieval by cross-correlation; connection with energy principles. Phys. Rev. E 75, 036103 (2007).

    Article  Google Scholar 

  15. Bakulin, A. & Calvert, R. in 74th Annual International Meeting, SEG, Expanded Abstracts 2477–2480 (SEG, 2004).

    Google Scholar 

  16. Bakulin, A. & Calvert, R. The virtual source method: Theory and case study. Geophysics 71, SI139–SI150 (2006).

    Article  Google Scholar 

  17. Dong, S., He, R. & Schuster, G. in 76th Annual International Meeting, SEG, Expanded Abstracts 2783–2786 (SEG, 2006).

    Google Scholar 

  18. Snieder, R., Wapenaar, K. & Larner, K. Spurious multiples in seismic interferometry of primaries. Geophysics 71, SI111–SI124 (2006).

    Article  Google Scholar 

  19. Halliday, D. F., Curtis, A., van Manen, D.-J. & Robertsson, J. Interferometric surface wave isolation and removal. Geophysics 72, A69–A73 (2007).

    Article  Google Scholar 

  20. Mehta, K., Bakulin, A., Sheiman, J., Calvert, R. & Snieder, R. Improving the virtual source method by wavefield separation. Geophysics 72, V79–V86 (2007).

    Article  Google Scholar 

  21. Halliday, D. F., Curtis, A. & Kragh, E. Seismic surface waves in a suburban environment—active and passive interferometric methods. The Leading Edge 27, 210–218 (2008).

    Article  Google Scholar 

  22. van Manen, D.-J., Robertsson, J. O. A. & Curtis, A. Modeling of wave propagation in inhomogeneous media. Phys. Rev. Lett. 94, 164301–164304 (2005).

    Article  Google Scholar 

  23. van Manen, D.-J., Curtis, A. & Robertsson, J. O. A. Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity. Geophysics 71, SI47–SI60 (2006).

    Article  Google Scholar 

  24. van Manen, D.-J., Robertsson, J. O. A. & Curtis, A. Exact wavefield simulation for finite-volume scattering problems. J. Acoustic. Soc. Am. Express Lett. 122, EL115–EL121 (2007).

    Article  Google Scholar 

  25. Hong, T.-K. & Menke, W. Tomographic investigation of the wear along the San Jacinto fault, southern California. Phys. Earth Planet. Inter. 155, 236–248 (2006).

    Article  Google Scholar 

  26. Robertsson, J. O. A. & Curtis, A. Wavefield separation using densely deployed, three component, single sensor groups in land surface seismic recordings. Geophysics 67, 1624–1633 (2002).

    Article  Google Scholar 

  27. Curtis, A. & Robertsson, J. Volumetric wavefield recording and near-receiver group velocity estimation for land seismics. Geophysics 67, 1602–1611 (2002).

    Article  Google Scholar 

  28. Snieder, R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E 69, 046610 (2004).

    Article  Google Scholar 

  29. Derode, A. et al. Recovering the Green’s function from field–field correlations in an open scattering medium. J. Acoust. Soc. Am. 113, 2973–2976 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The earthquake data used in this study were obtained from the IRIS Data Management Centre.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and D.H. developed the theory, H.N. created the examples and J.T. and B.B. contributed ideas that helped to shape the manuscript.

Corresponding author

Correspondence to Andrew Curtis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, A., Nicolson, H., Halliday, D. et al. Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geosci 2, 700–704 (2009). https://doi.org/10.1038/ngeo615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing