Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global mass wasting at continental margins during Ordovician high meteorite influx

Abstract

A large body of evidence exists for the break-up of an asteroid in the Middle Ordovician period (around 470 million years ago) and the rapid delivery of meteorites to the Earth, most notably recorded in meteorite-rich strata in Sweden1,2,3,4,5,6. The large number of meteorites at a single locality, spanning a relatively short time interval, implies a meteorite flux two orders of magnitude greater than at present7. Here I survey published data to show that the deposition of Middle Ordovician sedimentary megabreccias—consisting of large rock fragments dispersed in a fine matrix—was coincident with the high meteorite flux. The widespread distribution of such deposits reflects downslope movement of sediment and rock at continental margins on a global scale. My calculations show that this process could have been triggered by the seismic activity and destabilization of sediment slopes resulting from the high influx of meteorites. If so, the anomalous occurrence of megabreccias in the geological record may provide evidence for other episodes of enhanced meteorite delivery to the Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeogeographic reconstruction of the Southern Hemisphere at about 470 Myr.
Figure 2: Age limits for megabreccias developed during the Darriwilian.
Figure 3: Frequency of impactors of varying size into the Iapetus Ocean.

Similar content being viewed by others

References

  1. Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the Early Ordovician. Science 278, 88–90 (1997).

    Article  Google Scholar 

  2. Schmitz, B., Lindström, M., Asaro, F. & Tassinari, M. Geochemistry of meteorite-rich marine limestones strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden. Earth Planet. Sci. Lett. 145, 31–48 (1996).

    Article  Google Scholar 

  3. Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).

    Article  Google Scholar 

  4. Schmitz, B., Häggström, T. & Tassinari, M. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science 300, 961–964 (2003).

    Article  Google Scholar 

  5. Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004).

    Article  Google Scholar 

  6. Schmitz, B. et al. Asteroid breakup linked to the Great Ordovician biodiversification event. Nature Geosci. 1, 49–53 (2008).

    Article  Google Scholar 

  7. Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Gladman, B. & Häggström, T. Express delivery of fossil meteorites from the inner asteroid belt to Sweden. Icarus 188, 400–413 (2007).

    Article  Google Scholar 

  8. Korochatseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorol. Planet. Sci. 42, 113–130 (2007).

    Article  Google Scholar 

  9. Greenwood, R. C., Schmitz, B., Bridges, J. C., Hutchison, R. & Franchi, I. A. Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains. Earth Planet. Sci. Lett. 262, 204–213 (2007).

    Article  Google Scholar 

  10. Bland, P. A. & Artemieva, N. A. The rate of small impacts on Earth. Meteorol. Planet. Sci. 41, 607–631 (2006).

    Article  Google Scholar 

  11. Cocks, L. R. M. & Torsvik, T. H. Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. J. Geol. Soc. Lond. 159, 631–644 (2002).

    Article  Google Scholar 

  12. Suuroja, K. et al. in Impact Markers in the Stratigraphic Record (eds Keoberl, C. et al.) 333–347 (Springer, 2003).

    Book  Google Scholar 

  13. Ainsaar, L., Tinn, O. & Suuroja, K. in 9th Meeting of the Working Group on Ordovician Geology of Baltoscandia, Field Guide and Abstracts Vol. 7 (eds Ebbestad, J. O. R. et al.) (Sveriges Geologiska Undersökning, 2007).

    Google Scholar 

  14. James, N. P. & Stevens, R. K. Stratigraphy and correlation of the Cambro-Ordovician Cow Head Group, Western Newfoundland. Geol. Surv. Can. Bull. 366 (1986).

  15. Clift, P. D. et al. Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics 384, 91–113 (2004).

    Article  Google Scholar 

  16. Archer, J. B. Llanvirn stratigraphy of the Galway-Mayo border area, western Ireland. Geol. J. 12, 77–98 (1977).

    Article  Google Scholar 

  17. Jackson, D. E. & Lenz, A. C. The sequence and correlation of Early Ordovician (Arenig) graptolite faunas in the Richardson Trough and Misty Creek Embayment, Yukon Territory and District of Mackenzie, Canada. Can. J. Earth Sci. 43, 1791–1820 (2006).

    Article  Google Scholar 

  18. Pyle, L. J. & Barnes, C. R. Lower Paleozoic stratigraphic and biostratigraphic correlations in the Canadian Cordillera: Implications for the tectonic evolution of the Laurentian margin. Can. J. Earth Sci. 40, 1739–1753 (2003).

    Article  Google Scholar 

  19. Cooper, A. H. et al. The Skiddaw Group of the English Lake District (Memoir, British Geological Survey, 2004).

    Google Scholar 

  20. Woodcock, N. H. & Morris, J. H. in In Sight of the Suture: the Palaeozoic Geology of the Isle of Man in its Iapetus Ocean Context (eds Woodcock, N. H., Quirk, D. G., Fitches, W. R. & Barnes, R. P.) 121–138 (Geological Society Special Publication 160, The Geological Society, 1999).

    Google Scholar 

  21. Brück, P. M. & Vanguestaine, M. An Ordovician age for the Muggort’s Bay Lower Palaeozoic inlier, County Waterford, Ireland—the southernmost exposure of the Irish Caledonides. Geol. J. 40, 519–544 (2005).

    Article  Google Scholar 

  22. Kokelaar, B. P., Bevins, R. E. & Roach, R. A. Submarine silicic volcanism and associated sedimentary and tectonic processes, Ramsay Island, SW Wales. J. Geol. Soc. Lond. 142, 591–613 (1985).

    Article  Google Scholar 

  23. Todd, S. P., Connery, C., Higgs, K. T. & Murphy, F. C. An Early Ordovician age for the Annascaul Formation of the SE Dingle Peninsula, SW Ireland. J. Geol. Soc. Lond. 157, 823–833 (2000).

    Article  Google Scholar 

  24. Heredia, S. & Beresi, M. S. La Formación Empozada y su relación estratigráfica con la Formación Estancia San Isidrio (nom. nov.), Ordovícico de la Precordillera de Mendoza. Rev. Asoc. Geol. Argent. 59, 178–192 (2004).

    Google Scholar 

  25. Gleason, J. D., Finney, S. C., Peralta, S. H., Gehrels, G. E. & Marsaglia, K. M. Zircon and whole-rock Nd–Pb isotopic provenance of Middle and Upper Ordovician siliciclastic rocks, Argentine Precordillera. Sedimentology 54, 107–136 (2007).

    Article  Google Scholar 

  26. Thomas, W. A. & Astini, R. A. Ordovician accretion of the Argentine Precordillera terrane to Gondwana: A review. J. South Am. Earth Sci. 16, 67–79 (2003).

    Article  Google Scholar 

  27. Cluzel, D., Cadet, J-P. & Lapierre, H. Geodynamics of the Ogcheon Belt (South Korea). Tectonophysics 183, 41–56 (1990).

    Article  Google Scholar 

  28. Ryu, I. C., Oh, C. W. & Kim, S. W. A Middle Ordovician drowning unconformity on the northeastern flank of the Okcheon (Ogcheon) Belt, South Korea. Gondwana Res. 8, 511–528 (2005).

    Article  Google Scholar 

  29. Meng, X., Ge, M. & Tucker, M. E. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedim. Geol. 114, 189–222 (1997).

    Article  Google Scholar 

  30. O’Brien, B. H., Swinden, H. S., Dunning, G. R., Williams, S. H. & O’Brien, F. H. C. A Peri-Gondwanan arc-back arc complex in Iapetus: Early-Mid Ordovician evolution of the Exploits Group, Newfoundland. Am. J. Sci. 297, 220–272 (1997).

    Article  Google Scholar 

  31. Bergstrom, S. M. Whiterockian (Ordovician) conodonts from the Hølonda Limestone of the Trondheim region, Norwegian Caledonides. Norsk Geol. Tidds. 59, 295–307 (1979).

    Google Scholar 

  32. Ryan, P. D., Williams, D. M. & Skevington, D. in The Caledonides in the USA (ed. Wones, D. R.) 99–103 (I.G.C.P., 1980).

    Google Scholar 

  33. Zhen, Y. Y. & Percival, I. G. Middle Ordovician (Darriwilian) conodonts from allochthnonous limestones in the Oakdale Formation of central New South Wales. Alcheringa 28, 77–111 (2004).

    Article  Google Scholar 

  34. Zhou, Z., Dean, W. T. & Huilin, L. Early Ordovician trilobites from Dali, West Yunnan, China, and their palaeogeographical significance. Palaeontology 41, 429–460 (1998).

    Google Scholar 

  35. Zimmermann, U. & Bahlburg, H. Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50, 1079–1104 (2003).

    Article  Google Scholar 

  36. Bahlburg, H., Breitkreuz, C. & Zeil, W. in The Southern Central Andes (eds Bahlburg, H., Breitkreuz, Ch. & Giese, P.) 71–85 (Springer, 1988).

    Google Scholar 

  37. Gonzalez, J., Niemeyer, H., Benedetto, J. L. & Brussa, E. D. The Ordovician Quebrada Grande Formation, Cordon de Lila (Antofagasta Region, northern Chile): stratigraphic and paleogeographic significance. Rev. Geol. Chile 34, 277–290 (2007).

    Google Scholar 

  38. Dumoulin, J. A., Harris, A. G., Gagiev, M., Bradley, D. C. & Repetski, J. E. Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia. Geol. Soc. Am. Spec. Paper 360, 291–312 (2002).

    Google Scholar 

  39. Enig, C. C. & Gutiérrez-Marco, J. G. Signification des niveaux à lingulidés à la limite supérieure du Grès Armoricain (Ordovicien, Arenig, sud-ouest de L’Europe). Geobios 30, 481–495 (1997).

    Article  Google Scholar 

  40. Dypvik, H. & Jansa, L. F. Sedimentary signatures and processes during marine bolide impacts: A review. Sedim. Geol. 161, 309–337 (2003).

    Article  Google Scholar 

  41. Morrow, J. R., Sandberg, C. A. & Harris, A. G. Late Devonian Alamo Impact, southern Nevada, USA: Evidence of size, marine site, and widespread effects. Geol. Soc. Am. Spec. Paper 384, 259–280 (2005).

    Google Scholar 

  42. Day, S. & Maslin, M. Linking large impacts, gas hydrates, and carbon isotope excursions through widespread sediment liquefaction and continental slope failure: The example of the K–T boundary event. Geol. Soc. Am. Spec. Paper 384, 239–258 (2005).

    Google Scholar 

  43. Spence, G. H. & Tucker, M. E. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: A review. Sedim. Geol. 112, 163–193 (1997).

    Article  Google Scholar 

  44. Drzewiecki, P. A. & Simó, J. A. Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: Examples from the Late Cretaceous of the south-central Pyrenees, Spain. Sedim. Geol. 146, 155–189 (2002).

    Article  Google Scholar 

  45. Hine, A. C. et al. Megabreccia shedding from modern, low-relief carbonate platforms, Nicaraguan Rise. Geol. Soc. Am. Bull. 104, 928–943 (1992).

    Article  Google Scholar 

  46. Bralower, T. J., Paull, C. K. & Leckie, R. M. The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26, 331–334 (1998).

    Article  Google Scholar 

  47. Glikson, A. Y. Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Earth Planet. Sci. Lett. 267, 558–570 (2008).

    Article  Google Scholar 

  48. Wilson, R. C. & Keefer, D. K. Predicting areal limits of earthquake-induced landsliding. US Geol. Surv. Prof. Paper 1360, 316–345 (1985).

    Google Scholar 

  49. Astini, R. A. in The Proto-Andean Margin of Gondwana (eds Pankhurst, R. J. & Rapela, C. W.) 11–33 (Geological Society Special Publication 142, The Geological Society, 1998).

    Google Scholar 

  50. Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale (Cambridge Univ. Press, 2004).

    Google Scholar 

Download references

Acknowledgements

I acknowledge helpful reviews by B. Schmitz and M. Wendorff, discussion with G. Walkden and B. Cronin, and valuable technical support from B. Fulton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Parnell.

Supplementary information

Supplementary Information

Supplementary Information (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parnell, J. Global mass wasting at continental margins during Ordovician high meteorite influx. Nature Geosci 2, 57–61 (2009). https://doi.org/10.1038/ngeo386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing