Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño

Abstract

The strong and unusual El Niño of 2015–2016 produced a remarkable perturbation to the hydrologic budget of the tropical tropopause layer (14–19 km). This region regulates stratospheric water vapour, which has a direct radiative impact on surface temperatures. To first order, the coldest tropical tropopause temperature regulates the amount of water vapour entering the stratosphere by controlling the amount of dehydration in the rising air. Here we show that tropical convective cloud ice and associated cirrus sublimating at unusually high altitudes might also have a role in stratospheric hydration. The 2015–2016 El Niño produced decadal record water vapour amounts in the tropical Western Pacific, coincident with warm tropopause temperature anomalies. In the Central Pacific, convective cloud ice was observed 2 km above the anomalously cold tropopause. A trajectory-based dehydration model based on two reanalysis temperature and wind fields can account for only about 0.5–0.6 ppmv of the 0.9 ppmv tropical lower stratospheric moistening observed during this event. This suggests that unresolved convective dynamics and/or associated sublimation of lofted ice particles also contributed to lower stratospheric moistening. These observations suggest that convective moistening could contribute to future climate change-induced stratospheric water vapour increases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tropical ice water path, water vapour and CPT temperature anomalies for December 2015.
Figure 2: Time series of IWP, convective IWC, water vapour and temperature anomalies.
Figure 3: MLS and trajectory modelled water vapour anomaly comparison.

Similar content being viewed by others

References

  1. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    Article  Google Scholar 

  2. Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M. & Rosenlof, K. H. Stratospheric water vapor feedback. Proc. Natl Acad. Sci. USA 110, 18087–18091 (2013).

    Article  Google Scholar 

  3. Dvortsov, V. L. & Solomon, S. Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J. Geophys. Res. 106, 7505–7514 (2001).

    Article  Google Scholar 

  4. Fueglistaler, S. et al. The relation between atmospheric humidity and temperature trends for stratospheric water. J. Geophys. Res. 118, 1052–1074 (2013).

    Google Scholar 

  5. Schoeberl, M. R. & Dessler, A. E. Dehydration of the stratosphere. Atmos. Chem. Phys. 11, 8433–8446 (2011).

    Article  Google Scholar 

  6. Fueglistaler, S. et al. Tropical tropopause layer. Rev. Geophys. 47, RG1004 (2009).

    Article  Google Scholar 

  7. Fueglistaler, S., Bonazzola, M., Haynes, P. H. & Peter, T. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res. 110, D08107 (2005).

    Google Scholar 

  8. Munchak, L. A. & Pan, L. L. Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top-tropopause relationships. J. Geophys. Res. 119, 7963–7978 (2014).

    Article  Google Scholar 

  9. Yulaeva, E., Holton, J. R. & Wallace, J. M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994).

    Article  Google Scholar 

  10. Newell, R. E. & Gouldstewart, S. A stratospheric fountain. J. Atmos. Sci. 38, 2789–2796 (1981).

    Article  Google Scholar 

  11. Schoeberl, M. R., Dessler, A. E. & Wang, T. Simulation of stratospheric water vapor and trends using three reanalyses. Atmos. Chem. Phys. 12, 6475–6487 (2012).

    Article  Google Scholar 

  12. Dessler, A. E. et al. Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. 119, 12588–12598 (2014).

    Google Scholar 

  13. Schoeberl, M. R., Dessler, A. E. & Wang, T. Modeling upper tropospheric and lower stratospheric water vapor anomalies. Atmos. Chem. Phys. 13, 7783–7793 (2013).

    Article  Google Scholar 

  14. Wang, T., Dessler, A. E., Schoeberl, M. R., Randel, W. J. & Kim, J. E. The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor. Atmos. Chem. Phys. 15, 3517–3526 (2015).

    Article  Google Scholar 

  15. Schoeberl, M. R., Jensen, E. J. & Woods, S. Gravity waves amplify upper tropospheric dehydration by clouds. Earth Space Sci. 2, 485–500 (2015).

    Article  Google Scholar 

  16. Sherwood, S. C., Horinouchi, T. & Zeleznik, H. A. Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci. 60, 1847–1856 (2003).

    Article  Google Scholar 

  17. Jensen, E. & Pfister, L. Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res. 109, D02207 (2004).

    Article  Google Scholar 

  18. Ueyama, R., Jensen, E. J., Pfister, L. & Kim, J. E. Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer. J. Geophys. Res. 120, 10483–10500 (2015).

    Google Scholar 

  19. Holloway, C. E. & Neelin, J. D. The convective cold top and quasi equilibrium. J. Atmos. Sci. 64, 1467–1487 (2007).

    Article  Google Scholar 

  20. Dessler, A. E. et al. Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century. Geophys. Res. Lett. 43, 2323–2329 (2016).

    Article  Google Scholar 

  21. Corti, T. et al. Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophys. Res. Lett. 35, L10810 (2008).

    Article  Google Scholar 

  22. Khaykin, S. et al. Hydration of the lower stratosphere by ice crystal geysers over land convective systems. Atmos. Chem. Phys. 9, 2275–2287 (2009).

    Article  Google Scholar 

  23. Dessler, A. E., Hanisco, T. F. & Fueglistaler, S. Effects of convective ice lofting on H2O and HDO in the tropical tropopause layer. J. Geophys. Res. 112, D18309 (2007).

    Article  Google Scholar 

  24. Huang, B., L’Heureux, M., Hu, Z.-Z. & Zhang, H.-M. Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett. 43, 9165–9172 (2016).

    Article  Google Scholar 

  25. Dunkerton, T. J. The quasi-biennial oscillation of 2015–2016: hiccup or death spiral? Geophys. Res. Lett. 43, 10,547–10,552 (2016).

    Article  Google Scholar 

  26. Newman, P. A., Coy, L., Pawson, S. & Lait, L. R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 43, 8791–8797 (2016).

    Article  Google Scholar 

  27. Hu, D., Tian, W., Guan, Z., Guo, Y. & Dhomse, S. Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened Walker circulation. J. Clim. 29, 7755–7771 (2016).

    Article  Google Scholar 

  28. Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).

    Article  Google Scholar 

  29. Christiansen, B., Yang, S. & Madsen, M. S. Do strong warm ENSO events control the phase of the stratospheric QBO? Geophys. Res. Lett. 43, 10,489–10,495 (2016).

    Article  Google Scholar 

  30. Liang, C. K. et al. Record of tropical interannual variability of temperature and water vapor from a combined AIRS-MLS data set. J. Geophys. Res. 116, D06103 (2011).

    Google Scholar 

  31. Davis, S. M., Liang, C. K. & Rosenlof, K. H. Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett. 40, 2862–2866 (2013).

    Article  Google Scholar 

  32. Konopka, P., Ploeger, F., Tao, M. C. & Riese, M. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values. J. Geophys. Res. 121, 11486–11501 (2016).

    Google Scholar 

  33. Kiladis, G. N., Straub, K. H., Reid, G. C. & Gage, K. S. Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Q. J. R. Meteorol. Soc. 127, 1961–1983 (2001).

    Google Scholar 

  34. Kousky, V. E. & Higgins, R. W. An alert classification system for monitoring and assessing the ENSO cycle. Weather Forecast 22, 353–371 (2007).

    Article  Google Scholar 

  35. Davis, S. M. et al. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. Earth Syst. Sci. Data 8, 461–490 (2016).

    Article  Google Scholar 

  36. Su, H. et al. Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res. 119, 5787–5805 (2014).

    Google Scholar 

  37. Huang, B. Y. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  38. Winker, D. M. et al. The Calipso mission a global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91, 1211–1229 (2010).

    Article  Google Scholar 

  39. Young, S. A. & Vaughan, M. A. The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description. J. Atmos. Ocean. Technol. 26, 1105–1119 (2009).

    Article  Google Scholar 

  40. Heymsfield, A. et al. Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0 ° to -86 ° C: implications for spaceborne lidar retrievals. J. Appl. Meteorol. Clim. 53, 479–505 (2014).

    Article  Google Scholar 

  41. Thornberry, T. et al. Ice water content - extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014. J. Geophys. Res. 122, D025948 (2017).

    Google Scholar 

  42. Gettelman, A. et al. The tropical tropopause layer 1960–2100. Atmos. Chem. Phys. 9, 1621–1637 (2009).

    Article  Google Scholar 

  43. Bowman, K. P. & Carrie, G. D. The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci. 59, 1502–1514 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the CALIPSO project and team, and NASA ROSES NNH15ZDA001N-CCST (CALIPSO-CloudSat science team). NOAA participation in this study (S.M.D. and K.H.R.) was supported by NOAA’s Climate Program Office. We appreciate the helpful comments made by colleagues M. Schoeberl and E. Jensen.

Author information

Authors and Affiliations

Authors

Contributions

M.A.A. provided gridded cloud ice water content from the CALIOP data record, integrated above the CPT altitude and 17 km. S.M.D. and K.H.R. analysed the MLS water vapour observations and MERRA-2 temperature fields. H.Y. and A.E.D. provided the trajectory model and model runs. All authors are responsible for the scientific interpretation of the data and for writing the text.

Corresponding author

Correspondence to Melody A. Avery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avery, M., Davis, S., Rosenlof, K. et al. Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño. Nature Geosci 10, 405–409 (2017). https://doi.org/10.1038/ngeo2961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2961

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene