Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland

Abstract

The Bárðarbunga eruption in Iceland in 2014 and 2015 produced about 1.6 km3 of lava. Magma propagated away from Bárðarbunga to a distance of 48 km in the subsurface beneath Vatnajökull glacier, emerging a few kilometres beyond the glacier’s northern rim. A puzzling observation is the lack of shallow (<3 km deep), high-frequency earthquakes associated with shallow dyke formation near the subaerial and subglacial eruptive sites, suggesting that near-surface dyke formation is seismically quiet. However, seismic array observations and seismic full wavefield simulations reveal the presence and nature of shallow, pre-eruptive, long-duration seismic tremor activity. Here we use analyses of seismic data to constrain the relationships between seismicity, tremor, dyke propagation and magma flow during the Bárðarbunga eruption. We show that although tremor is usually associated with magma flow in volcanic settings, pre-eruptive tremor at Bárðarbunga was probably caused by swarms of microseismic events during dyke formation, and hence is directly associated with fracturing of the upper 2–3 km of the crust. Subsequent magma flow in the newly formed shallow dyke was seismically silent, with almost a complete absence of seismicity or tremor. Hence, we suggest that the transition from temporarily isolated, large, deep earthquakes to many smaller, shallower, temporally overlapping earthquakes (<magnitude 2) that appear as continuous tremor announces the arrival of a dyke opening in the shallow crust, forming a pathway for silent magma flow to the Earth’s surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Earthquake locations show the propagation of the dyke at depth.
Figure 2: Laterally moving and shallowing pre-eruptive tremor on 3 September 2014.
Figure 3: Projected back azimuth and amplitude location of the pre-eruptive tremor.
Figure 4: Comparison of real and synthetic tremor.
Figure 5: Tremor simulations indicate a tremor source depth of less than 2 km.

Similar content being viewed by others

References

  1. McNutt, S. R. Volcanic tremor wags on. Nature 470, 471–472 (2011).

    Article  Google Scholar 

  2. Chouet, B. A. Dynamics of a fluid-driven crack in three dimensions by the finite difference method. J. Geophys. Res. 91, 13967 (1986).

    Article  Google Scholar 

  3. Chouet, B. Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J. Geophys. Res. 90, 1881–1893 (1985).

    Article  Google Scholar 

  4. Julian, B. R. Volcanic tremor: nonlinear excitation by fluid flow. J. Geophys. Res. 99, 11859–11877 (1994).

    Article  Google Scholar 

  5. Hellweg, M. Physical models for the source of Lascar’s harmonic tremor. J. Volcanol. Geotherm. Res. 101, 183–198 (2000).

    Article  Google Scholar 

  6. Rust, A. C., Balmforth, N. J. & Mandre, S. The feasibility of generating low-frequency volcano seismicity by flow through a deformable channel. Geol. Soc. Lond. 307, 45–56 (2008).

    Article  Google Scholar 

  7. Powell, T. W. & Neuberg, J. Time dependent features in tremor spectra. J. Volcanol. Geotherm. Res. 128, 177–185 (2003).

    Article  Google Scholar 

  8. Hotovec, A. J., Prejean, S. G., Vidale, J. E. & Gomberg, J. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano. J. Volcanol. Geotherm. Res. 259, 89–99 (2013).

    Article  Google Scholar 

  9. Chouet, B. A. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309–316 (1996).

    Article  Google Scholar 

  10. Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Barðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).

    Article  Google Scholar 

  11. Hjartardóttir, Á. R., Einarsson, P., Gudmundsson, M. T. & Högnadóttir, T. Fracture movements and graben subsidence during the 2014 Bárðarbunga dike intrusion in Iceland. J. Volcanol. Geotherm. Res. 310, 242–252 (2015).

    Article  Google Scholar 

  12. Gíslason, S. et al. Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem. Perspect. Lett. 1, 84–93 (2015).

    Article  Google Scholar 

  13. Scientific Advisory Board of the Icelandic Civil Protection. Factsheet-Bárðarbunga-20140906 (Icelandic Met Office, 2014); http://en.vedur.is/media/jar/Factsheet-Bardarbunga-140906.pdf

  14. Pfeffer, M. A. et al. Factsheet-Bárðarbunga-20140823 (Icelandic Met Office, 2014); http://en.vedur.is/media/jar/Bardarbunga_Daily_status_report_230814.pdf

  15. Ágústsdóttir, T. et al. Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland. Geophys. Res. Lett. 43, 1495–1503 (2016).

    Article  Google Scholar 

  16. Thun, J. et al. Micrometre-scale deformation observations reveal fundamental controls on geological rifting. Sci. Rep. 6, 36676 (2016).

    Article  Google Scholar 

  17. Almendros, J., Abella, R., Mora, M. M. & Lesage, P. Array analysis of the seismic wavefield of long-period events and volcanic tremor at Arenal volcano, Costa Rica. J. Geophys. Res. 119, 5536–5559 (2014).

    Article  Google Scholar 

  18. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57, 1408–1418 (1969).

    Article  Google Scholar 

  19. Taisne, B., Brenguier, F., Shapiro, N. M. & Ferrazzini, V. Imaging the dynamics of magma propagation using radiated seismic intensity. Geophys. Res. Lett. 38, L04304 (2011).

    Article  Google Scholar 

  20. Eibl, E. P. S., Bean, C. J., Vogfjörd, K. & Braiden, A. Persistent shallow background microseismicity on Hekla volcano, Iceland: A potential monitoring tool. J. Volcanol. Geotherm. Res. 289, 224–237 (2014).

    Article  Google Scholar 

  21. Doering, E., Schedwill, H. & Dehli, M. Grundlagen der Technischen Thermodynamik (Springer, 2008).

    Google Scholar 

  22. Gudmundsson, M. T. et al. Gradual caldera collapse at Bárðarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353, aaf8988 (2016).

    Article  Google Scholar 

  23. Balmforth, N. J., Craster, R. V. & Rust, A. C. Instability in flow through elastic conduits and volcanic tremor. J. Fluid Mech. 527, 353–377 (2005).

    Article  Google Scholar 

  24. Björnsson, H. & Einarsson, P. Volcanoes beneath Vatnajökull, Iceland: evidence from radio echo-sounding, earthquakes and jökulhlaups. Jökull 40, 147–168 (1990).

    Google Scholar 

  25. Flóvenz, Ó. G. & Gunnarsson, K. Seismic crustal structure in Iceland and surrounding area. Tectonophysics 189, 1–17 (1991).

    Article  Google Scholar 

  26. Ferrazzini, V., Aki, K. & Chouet, B. Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array. J. Geophys. Res. 96, 6199 (1991).

    Article  Google Scholar 

  27. DeLuca, G., Scarpa, R., Del Pezzo, E. & Simini, M. Shallow structure of Mt Vesuvius volcano, Italy, from seismic array analysis. Geophys. Res. Lett. 24, 481–484 (1997).

    Article  Google Scholar 

  28. Einarsson, P. & Brandsdóttir, B. Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla Volcano in NE-Iceland. J. Geophys. 47, 160–165 (1980).

    Google Scholar 

  29. Belachew, M. et al. Comparison of dike intrusions in an incipient seafloor-spreading segment in Afar, Ethiopia: seismicity perspectives. J. Geophys. Res. 116, 2156–2202 (2011).

    Article  Google Scholar 

  30. Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975-1984 Krafla rifting episode. J. Geophys. Res. 111, B12404 (2006).

    Article  Google Scholar 

  31. Aki, K. & Koyanagi, R. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. J. Geophys. Res. 86, 7095–7109 (1981).

    Article  Google Scholar 

  32. Ferrick, M. G., Qamar, A. & Lawrence, W. F. S. Source mechanicm of volcanic tremor. J. Geophys. Res. 87, 8675–8683 (1982).

    Article  Google Scholar 

  33. Schmidt, R. O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. AP-34, 276–280 (1986).

    Article  Google Scholar 

  34. Goldstein, P. & Archuleta, R. J. Array analysis of seismic signals. Geophys. Res. Lett. 14, 13–16 (1987).

    Article  Google Scholar 

  35. Frankel, A., Hough, S., Friberg, P. & Busby, R. Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California. Bull. Seismol. Soc. Am. 81, 1900–1922 (1991).

    Google Scholar 

  36. Del Pezzo, E., La Rocca, M. & Ibanez, J. Observations of high-frequency scattered waves using dense arrays at Teide volcano. Bull. Seismol. Soc. Am. 87, 1637–1647 (1997).

    Google Scholar 

  37. Saccorotti, G. & Del Pezzo, E. A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals. Geophys. J. Int. 143, 249–261 (2000).

    Article  Google Scholar 

  38. Rost, S. & Thomas, C. Array seismology: methods and applications. Rev. Geophys. 40, RG000100 (2002).

    Article  Google Scholar 

  39. Beyreuther, M. et al. ObsPy: a python toolbox for seismology. Seismol. Res. Lett. 81, 530–533 (2010).

    Article  Google Scholar 

  40. Megies, T., Beyreuther, M., Barsch, R., Krischer, L. & Wassermann, J. ObsPy—what can it do for data centers and observatories? Ann. Geophys. 54, 47–58 (2011).

    Google Scholar 

  41. La Rocca, M. et al. Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor. Bull. Seismol. Soc. Am. 98, 620–635 (2008).

    Article  Google Scholar 

  42. Almendros, J. et al. A double seismic antenna experiment at Teide volcano: existence of local seismicity and lack of evidences of volcanic tremor. J. Volcanol. Geotherm. Res. 103, 439–462 (2000).

    Article  Google Scholar 

  43. Kumagai, H. et al. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches. J. Geophys. Res. 115, 2156–2202 (2010).

    Article  Google Scholar 

  44. Battaglia, J. & Aki, K. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J. Geophys. Res. 108, 2364 (2003).

    Article  Google Scholar 

  45. Björnsson, H. Surface and bedrock topography of ice caps in Iceland, mapped by radio echo-sounding. Ann. Glaciol. 8, 11–18 (1986).

    Article  Google Scholar 

  46. Tromp, J., Komatitsch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008).

    Google Scholar 

  47. Martens, H. R. et al. Dense seismic network provides new insight into the 2007 Upptyppingar dyke intrusion. Jökull 60, 47–66 (2010).

    Google Scholar 

  48. Mitchell, M. A., White, R. S., Roecker, S. & Greenfield, T. Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. Geophys. Res. Lett. 40, 5040–5046 (2013).

    Article  Google Scholar 

  49. Menke, W., West, M., Brandsdóttir, B. & Sparks, D. Compressional and shear velocity structure of the lithosphere in Northern Iceland. Bull. Seismol. Soc. Am. 88, 1561–1571 (1998).

    Google Scholar 

  50. Pálmason, G. Seismic refraction investigation of the basalt lavas in northern and eastern Iceland. Jökull 13, 40–60 (1963).

    Google Scholar 

  51. Darbyshire, F. A., Bjarnason, I. T., White, R. S. & Flóvenz, Ó. G. Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. Geophys. J. Int. 135, 1131–1149 (1998).

    Article  Google Scholar 

  52. Gardner, G., Gardner, L. W. & Gregory, A. R. Formation velocity and density—the diagnostic basics for statigraphic traps. Geophysics 39, 770–780 (1974).

    Article  Google Scholar 

  53. Kohnen, H. The temperature dependence of seismic waves in ice. J. Glaciol. 13, 144–147 (1974).

    Article  Google Scholar 

  54. Bentley, C. R. Seismic-wave velocities in anisotropic ice: a comparison of measured and calculated values in and around the deep drill hole at Byrd Station, Antarctica. J. Geophys. Res. 77, 4406–4420 (1972).

    Article  Google Scholar 

  55. Dewart, G. Seismic Investigation of Ice Properties and Bedrock Topography at the Confluence of Two Glaciers, Kaskawulsh Glacier, Yukon Territory, Canada. Technical Report, Institute of Polar Studies Report No. 27 (Institute of Polar Studies, The Ohio State University, 1968).

  56. Alfaro, R., Brandsdóttir, B., Rowlands, D. P., White, R. S. & Gudmundsson, M. T. Structure of the Grímsvötn central volcano under the Vatnajökull icecap, Iceland. Geophys. J. Int. 168, 863–876 (2007).

    Article  Google Scholar 

  57. Guðmundsson, M. T. The Grímsvötn caldera, Vatnajökull: subglacial topography and structure of caldera infill. Jökull 39, 1–20 (1989).

    Google Scholar 

  58. Kohnen, H. & Gow, A. J. Ultrasonic velocity investigations of crystal anisotropy in deep ice cores from Antarctica. J. Geophys. Res. 84, 4865–4874 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

The data were collected and analysed within the framework of FutureVolc, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement no. 308377. The Geological Survey of Ireland (GSI) provided additional financial support for field work. We thank B. H. Bergsson and H. Buxel for technical support, and M. H. Steinarsson and A. Braiden for support in the field. We are grateful to J. Almendros for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

E.P.S.E., C.J.B. and M.M. participated in instrument installation and data collection from seismometers in Iceland and analysing the data. E.P.S.E carried out processing including amplitude locations, array locations and tremor simulations. K.S.V. relocated earthquakes in the dyke and participated with E.P.S.E., C.J.B. and I.L. in the interpretation of the results. Numerical wavefield simulations were performed by Y.Y. on the basis of the topography provided by F.P. G.S.O’B. performed tremor simulations due to magma flow. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Eva P. S. Eibl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eibl, E., Bean, C., Vogfjörd, K. et al. Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland. Nature Geosci 10, 299–304 (2017). https://doi.org/10.1038/ngeo2906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing