Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere

Abstract

The extent to which water and halogens in Earth’s mantle have primordial origins, or are dominated by seawater-derived components introduced by subduction is debated. About 90% of non-radiogenic xenon in the Earth’s mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from mid-ocean ridges and ocean islands globally. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth’s mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinized lithospheric mantle associated with dehydrated oceanic crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 206Pb/204Pb versus 87Sr/86Sr diagram for glasses included in this study.
Figure 2: The relative abundances of halogens and H2O in OIB and MORB glasses.
Figure 3: Log–log concentration plots showing the relative compatibilities of Cl and F.
Figure 4: The volatile, isotope and trace element systematics of the mantle.

Similar content being viewed by others

References

  1. Schilling, J. G., Unni, C. K. & Bender, M. L. Origin of chlorine and bromine in the oceans. Nature 273, 631–636 (1978).

    Article  Google Scholar 

  2. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J.-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  3. Parai, R. & Mukhopadhyay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317, 396–406 (2012).

    Article  Google Scholar 

  4. Stroncik, N. A. & Haase, K. M. Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology 32, 945–948 (2004).

    Article  Google Scholar 

  5. Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).

    Article  Google Scholar 

  6. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  Google Scholar 

  7. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    Article  Google Scholar 

  8. Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU EM—the French-Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992).

    Article  Google Scholar 

  9. Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330, 274–299 (2012).

    Article  Google Scholar 

  10. White, W. M. & Hofmann, A. W. Mantle heterogeneity and isotopes in oceanic basalts. Nature 295, 363–364 (1982).

    Article  Google Scholar 

  11. Kendrick, M. A., Jackson, M. G., Hauri, E. & Phillips, D. The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: assimilated seawater, EM2 and high 3He/4He components. Earth Planet. Sci. Lett. 410, 197–209 (2015).

    Article  Google Scholar 

  12. Kendrick, M. A. et al. Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem. Geol. 370, 69–81 (2014).

    Article  Google Scholar 

  13. Wallace, P. J. Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP Site 1140): implications for source region compositions, magmatic processes and plateau subsidence. J. Petrol. 43, 1311–1326 (2002).

    Article  Google Scholar 

  14. Hanyu, T. et al. Isotope evolution in the HIMU reservoir beneath St. Helena: implications for the mantle recycling of U and Th. Geochim. Cosmochim. Acta 143, 232–252 (2014).

    Article  Google Scholar 

  15. Maia, M., Hemond, C. & Gente, P. Contrasted interactions between plume, upper mantle, and lithosphere: foundation chain case. Geochem. Geophys. Geosyst. 2, GC000117 (2001).

    Article  Google Scholar 

  16. Stroncik, N. A. & Devey, C. W. Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions. Nat. Geosci. 4, 393–397 (2011).

    Article  Google Scholar 

  17. Kendrick, M. A., Arculus, R. J., Burnard, P. & Honda, M. Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim. Cosmochim. Acta 123, 150–165 (2013).

    Article  Google Scholar 

  18. Cabral, R. A. et al. Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem. Geophys. Geosyst. 15, 4445–4467 (2014).

    Article  Google Scholar 

  19. Jackson, M. G. et al. Deeply dredged submarine HIMU glasses from the Tuvalu Islands, Polynesia: implications for volatile budgets of recycled oceanic crust. Geochem. Geophys. Geosyst. 16, GC005966 (2015).

    Article  Google Scholar 

  20. Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M. & Hauri, E. H. The effect of primary versus secondary processes on the volatile content of MORB glasses: an example from the equatorial Mid-Atlantic Ridge (5 degrees N-3 degrees S). J. Geophys. Res. 120, 125–144 (2015).

    Article  Google Scholar 

  21. Schilling, J. G., Hanan, B. B., McCully, B., Kingsley, R. H. & Fontignie, D. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: a Nd-Sr-Pb isotopic study. J. Geophys. Res. 99, 12005–12028 (1994).

    Article  Google Scholar 

  22. Michael, P. J. & Cornell, W. C. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18325–18356 (1998).

    Article  Google Scholar 

  23. le Roux, P. J., Shirey, S. B., Hauri, E. H., Perfit, M. R. & Bender, J. F. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10 degrees N and 12–14 degrees N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet. Sci. Lett. 251, 209–231 (2006).

    Article  Google Scholar 

  24. Kendrick, M. A., Honda, M. & Vanko, D. A. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles. Contrib. Mineral. Petrol. 170, 1–20 (2015).

    Article  Google Scholar 

  25. Jambon, A., Deruelle, B., Dreibus, G. & Pineau, F. Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem. Geol. 126, 101–117 (1995).

    Article  Google Scholar 

  26. Shimizu, K. et al. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim. Cosmochim. Acta 176, 44–80 (2016).

    Article  Google Scholar 

  27. Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000).

    Article  Google Scholar 

  28. Michael, P. Regionally distinctive sources of depleted MORB—evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995).

    Article  Google Scholar 

  29. Niu, Y. L. & Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth Planet. Sci. Lett. 148, 471–483 (1997).

    Article  Google Scholar 

  30. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Article  Google Scholar 

  31. Kodolányi, J., Pettke, T., Spandler, C., Kamber, B. S. & Gméling, K. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol. 53, 235–270 (2012).

    Article  Google Scholar 

  32. Kendrick, M. A. et al. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 365, 86–96 (2013).

    Article  Google Scholar 

  33. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  34. Pamato, M. G. et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat. Geosci. 8, 75–79 (2015).

    Article  Google Scholar 

  35. Herzberg, C. et al. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth Planet. Sci. Lett. 396, 97–106 (2014).

    Article  Google Scholar 

  36. Weiss, Y., Class, C., Goldstein, S. L. & Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–670 (2016).

    Article  Google Scholar 

  37. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  38. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 112, B03211 (2007).

    Google Scholar 

  39. Palme, H. & O’Neill, H. S. C. in Treatise on Geochemistry Vol. 2 (eds Holland, H. & Turekian, K. K.) 1–38 (Elsevier, 2003).

    Google Scholar 

  40. Graham, D. W. in Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 245–317 (Geochemical Society/ Mineralogical Society of America, 2002).

    Google Scholar 

  41. Allegre, C. J., Hofmann, A. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).

    Article  Google Scholar 

  42. Deruelle, B., Dreibus, G. & Jambon, A. Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet. Sci. Lett. 108, 217–227 (1992).

    Article  Google Scholar 

  43. Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).

    Article  Google Scholar 

  44. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

    Article  Google Scholar 

  45. Kendrick, M. A., Scambelluri, M., Honda, M. & Phillips, D. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4, 807–812 (2011).

    Article  Google Scholar 

  46. Barry, P. H. & Hilton, D. R. Release of subducted sedimentary nitrogen throughout Earth’s mantle. Geochem. Perspect. Lett. 2, 148–159 (2016).

    Article  Google Scholar 

  47. Ito, E., Harris, D. M. & Anderson, A. T. Alteration of oceanic-crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 47, 1613–1624 (1983).

    Article  Google Scholar 

  48. Sharp, Z. D. et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446, 1062–1065 (2007).

    Article  Google Scholar 

  49. Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  50. Scambelluri, M., Fiebig, J., Malaspina, N., Muntener, O. & Pettke, T. Serpentinite subduction: implications for fluid processes and trace-element recycling. Int. Geol. Rev. 46, 595–613 (2004).

    Article  Google Scholar 

  51. Kendrick, M. A. High precision Cl, Br and I determination in mineral standards using the noble gas method. Chem. Geol. 292–293, 116–126 (2012).

    Article  Google Scholar 

  52. Workman, R. K., Hauri, E., Hart, S. R., Wang, J. & Blusztajn, J. Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet. Sci. Lett. 241, 932–951 (2006).

    Article  Google Scholar 

  53. Danyushevsky, L. V. et al. The H2O content of basalt glasses from Southwest Pacific back-arc basins. Earth Planet. Sci. Lett. 117, 347–362 (1993).

    Article  Google Scholar 

  54. Manhes, G., Allegre, C. J. & Povost, A. U-Th-Pb systematics of the eucrite ‘Juvinas’: precise age determination and evidence for exotic lead. Geochem. Cosmochim. Acta 48, 2247–2264 (1984).

    Article  Google Scholar 

  55. White, W. M. & Patchett, J. Hf-Nd-Sr isotopes and incompatible element abundances in Island Arcs—implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167–185 (1984).

    Article  Google Scholar 

  56. Richard, P., Shimizu, N. & Allegre, C. J. 143Nd–146Nd A natural tracer—application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–278 (1976).

    Article  Google Scholar 

  57. Birck, J. L. Precision K-Rb isotopic analysis—application to Rb-Sr chronology. Chem. Geol. 56, 73–83 (1986).

    Article  Google Scholar 

  58. Nier, A. O. The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Phys. Rev. 54, 275–278 (1938).

    Article  Google Scholar 

Download references

Acknowledgements

M.A.K. is supported by an Australian Research Council Future Fellowship (project number FT13 0100141). This work was made possible by several national funding agencies that have facilitated scientific cruises and sample recovery from the seafloor over many years. Grants to M.R.P. from the National Science Foundation funded field programmes where samples were collected from the East Pacific Rise, Juan de Fuca Ridge and Galapagos Spreading Centre. We gratefully acknowledge technical staff that made the reported measurements possible including X. Zhang, P. Holden and P. Tollan at the ANU.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K. conceived the project and undertook the majority of analyses. C.H. measured radiogenic isotopes in Foundation and St Helena samples at PSO-Brest and T.R. measured water by FT-IR at UTAS. C.H., V.S.K., C.W.D., L.D., M.G.J. and M.R.P. provided sample material and L.D. and V.S.K. provided major and/or trace element data associated with their samples. M.A.K. wrote the initial manuscript and incorporated comments from V.S.K., M.G.J., C.W.D., L.D., M.R.P. and C.H. into the final version.

Corresponding author

Correspondence to M. A. Kendrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2741 kb)

Supplementary Information

Supplementary Information (XLSX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendrick, M., Hémond, C., Kamenetsky, V. et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nature Geosci 10, 222–228 (2017). https://doi.org/10.1038/ngeo2902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing