Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon sequestration in the deep Atlantic enhanced by Saharan dust

Abstract

Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chlorophyll and dust deposition flux in the Atlantic Ocean.
Figure 2: Surface ocean and deep particle flux data for the study sites.
Figure 3: Time-series fluxes in the central Atlantic gyres.
Figure 4: Trichodesmium spp. ‘tufts’ from the summer POC flux pulse at NOG.
Figure 5: POC flux versus isotopic composition of the trap material (δ15NPN) from NOG (blue circles) and SOG (red circles).

Similar content being viewed by others

References

  1. Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Google Scholar 

  2. Klaas, C. & Archer, D. E. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16, 63-61-63-14 (2002).

    Google Scholar 

  3. Antoine, D., André, J. M. & Morel, A. Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles 10, 57–69 (1996).

    Google Scholar 

  4. Tilstone, G. H. et al. Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean. Remote Sens. Environ. 164, 254–269 (2015).

    Google Scholar 

  5. Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. Picoplanktonic community structure on an Atlantic transect from 50° N to 50° S. Deep-Sea Res. I 45, 1339–1355 (1998).

    Google Scholar 

  6. Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).

    Google Scholar 

  7. Schlosser, C. et al. Seasonal ITCZ migration dynamically controls the location of the (sub) tropical Atlantic biogeochemical divide. Proc. Natl Acad. Sci. USA 111, 1438–1442 (2014).

    Google Scholar 

  8. Moore, C. M. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2, 867–871 (2009).

    Google Scholar 

  9. Mather, R. L. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 1, 439–443 (2008).

    Google Scholar 

  10. Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).

    Google Scholar 

  11. Lee, C. et al. Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Res II 56, 1420–1436 (2009).

    Google Scholar 

  12. Poulton, A. J., Adey, T. R., Balch, W. M. & Holligan, P. M. Relating coccolithophore calcification rates to phytoplankton community dynamics: regional differences and implications for carbon export. Deep-Sea Res. II 54, 538–557 (2007).

    Google Scholar 

  13. Passow, U. & De La Rocha, C. L. Accumulation of mineral ballast on organic aggregates. Glob. Biogeochem. Cycles 20, GB1013 (2006).

    Google Scholar 

  14. Prospero, J. M., Collard, F.-X., Molinié, J. & Jeannot, A. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Glob. Biogeochem. Cycles 28, 757–773 (2014).

    Google Scholar 

  15. Luo, C., Mahowald, N. M. & Del Corral, J. Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res. 108, 4447 (2003).

    Google Scholar 

  16. Mahowald, N., Luo, C., Del Corral, J. & Zender, C. S. Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J. Geophys. Res. 108, 4352 (2003).

    Google Scholar 

  17. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Google Scholar 

  18. Emerson, S. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28, 14–28 (2014).

    Google Scholar 

  19. Conte, M. H., Ralph, N. & Ross, E. H. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II 48, 1471–1505 (2001).

    Google Scholar 

  20. Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc. Natl Acad. Sci. USA 109, 1842–1849 (2012).

    Google Scholar 

  21. Bory, A. et al. Downward particle fluxes within different productivity regimes off the Mauritanian upwelling zone (EUMELI program). Deep-Sea Res. I 48, 2251–2282 (2001).

    Google Scholar 

  22. Zamora, L. M., Prospero, J. M., Hansell, D. A. & Trapp, J. M. Atmospheric P deposition to the subtropical North Atlantic: sources, properties, and relationship to N deposition. J. Geophys. Res. 118, 1546–1562 (2013).

    Google Scholar 

  23. Baker, A. et al. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: links to primary productivity and nitrogen fixation. Deep-Sea Res. I 54, 1704–1720 (2007).

    Google Scholar 

  24. Rees, A. Rates of Nitrogen Fixation in Surface Waters by Stable-Isotope Mass Spectrometry during the AMT Programme Cruise AMT20 (JC053) (British Oceanographic Data Centre—Natural Environment Research Council, 2015); http://dx.doi.org/10.5285/215a1e9b-428b-52f5-e053-6c86abc06d17

    Google Scholar 

  25. Snow, J. T. et al. Environmental controls on the biogeography of diazotrophy and Trichodesmium in the Atlantic Ocean. Glob. Biogeochem. Cycles 29, 865–884 (2015).

    Google Scholar 

  26. Painter, S. C., Patey, M. D., Forryan, A. & Torres-Valdes, S. Evaluating the balance between vertical diffusive nitrate supply and nitrogen fixation with reference to nitrate uptake in the eastern subtropical North Atlantic Ocean. J. Geophys. Res. 118, 5732–5749 (2013).

    Google Scholar 

  27. Luo, Y.-W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).

    Google Scholar 

  28. Baker, A. R., Adams, C., Bell, T. G., Jickells, T. D. & Ganzeveld, L. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50° N to 50° S based on large-scale field sampling: Iron and other dust-associated elements. Glob. Biogeochem. Cycles 27, 755–767 (2013).

    Google Scholar 

  29. Ussher, S. J. et al. Impact of atmospheric deposition on the contrasting iron biogeochemistry of the North and South Atlantic Ocean. Glob. Biogeochem. Cycles 27, 1096–1107 (2013).

    Google Scholar 

  30. Conway, T. M. & John, S. G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215 (2014).

    Google Scholar 

  31. Montoya, J. P. Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 2nd edn, 176–201 (Blackwell, 2007).

    Google Scholar 

  32. Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Glob. Biogeochem. Cycles 22, GB3014 (2008).

    Google Scholar 

  33. Fernández, A., Marañón, E. & Bode, A. Large-scale meridional and zonal variability in the nitrogen isotopic composition of plankton in the Atlantic Ocean. J. Plankton Res. 36, 1060–1073 (2014).

    Google Scholar 

  34. Reynolds, S. E. et al. How widespread and important is N2 fixation in the North Atlantic Ocean? Glob. Biogeochem. Cycles 21, GB4015 (2007).

    Google Scholar 

  35. Altabet, M. A. Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep Sea Res. 35, 535–554 (1988).

    Google Scholar 

  36. Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Glob. Biogeochem. Cycles. 19, GB1018 (2005).

    Google Scholar 

  37. Dore, J. E., Brum, J. R., Tupas, L. M. & Karl, D. M. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol. Oceanogr. 47, 1595–1607 (2002).

    Google Scholar 

  38. Lipschultz, F., Bates, N. R., Carlson, C. A. & Hansell, D. A. New production in the Sargasso Sea: history and current status. Glob. Biogeochem. Cycles 16, 1-1-1-17 (2002).

    Google Scholar 

  39. Thompson, A. W. & Zehr, J. P. Cellular interactions: lessons from the nitrogen-fixing cyanobacteria. J. Phycol. 49, 1024–1035 (2013).

    Google Scholar 

  40. Mulholland, M. The fate of nitrogen fixed by diazotrophs in the ocean. Biogeosciences 4, 37–51 (2007).

    Google Scholar 

  41. Villareal, T. & Carpenter, E. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).

    Google Scholar 

  42. Rubin, M., Berman-Frank, I. & Shaked, Y. Dust-and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4, 529–534 (2011).

    Google Scholar 

  43. Honda, M. C. & Watanabe, S. Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys. Res. Lett. 37, L02605 (2010).

    Google Scholar 

  44. Glaccum, R. A. & Prospero, J. M. Saharan aerosols over the tropical North Atlantic—Mineralogy. Mar. Geol. 37, 295–321 (1980).

    Google Scholar 

  45. Iversen, M. H. & Robert, M. L. Ballasting effects of smectite on aggregate formation and export from a natural plankton community. Mar. Chem. 175, 18–27 (2015).

    Google Scholar 

  46. Le Moigne, F. A., Gallinari, M., Laurenceau, E. & De La Rocha, C. Enhanced rates of particulate organic matter remineralization by microzooplankton are diminished by added ballast minerals. Biogeosciences 10, 5755–5765 (2013).

    Google Scholar 

  47. Arnarson, T. S. & Keil, R. G. Influence of organic-mineral aggregates on microbial degradation of the dinoflagellate Scrippsiella trochoidea. Geochim. Cosmochim. Acta 69, 2111–2117 (2005).

    Google Scholar 

  48. Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).

    Google Scholar 

  49. Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    Google Scholar 

  50. Jickells, T. & Moore, C. M. The importance of atmospheric deposition for ocean productivity. Annu. Rev. Ecol. Syst. 46, 481–501 (2015).

    Google Scholar 

  51. Sunda, W. G. Iron and the carbon pump. Science 327, 654–655 (2010).

    Google Scholar 

  52. Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663 (1984).

    Google Scholar 

  53. Salter, I. et al. Estimating carbon, silica and diatom export from a naturally fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: a novel drifting sediment trap. Deep-Sea Res. II 54, 2233–2259 (2007).

    Google Scholar 

  54. Mortlock, R. A. & Froelich, P. N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 36, 1415–1426 (1989).

    Google Scholar 

  55. Planquette, H., Fones, G. R., Statham, P. J. & Morris, P. J. Origin of iron and aluminium in large particles (>53 μm) in the Crozet region, Southern Ocean. Mar. Chem. 115, 31–42 (2009).

    Google Scholar 

  56. Guieu, C., Loÿe-Pilot, M. D., Ridame, C. & Thomas, C. Chemical characterization of the Saharan dust end-member: some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res. 107, ACH 5-1-ACH 5-11 (2002).

    Google Scholar 

  57. Gaiero, D. M., Probst, J.-L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).

    Google Scholar 

  58. Torres-Padrón, M. et al. Variability of dust inputs to the CANIGO zone. Deep-Sea Res. 49, 3455–3464 (2002).

    Google Scholar 

  59. Hosoda, S., Ohira, T., Sato, K. & Suga, T. Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr. 66, 773–787 (2010).

    Google Scholar 

  60. Harris, C. & Rees, A. AMT19 (JC039) Micro-Molar Nutrient Measurements from CTD Bottle Samples (British Oceanographic Data Centre - Natural Environment Research Council, 2016); http://dx.doi.org/10.5285/42974c1c-ea2d-57a5-e053-6c86abc09d06

    Google Scholar 

  61. Harris, C. & Woodward, E. M. S. AMT20 (JC053) Micro-Molar Nutrient Measurements from CTD Bottle Samples (British Oceanographic Data Centre - Natural Environment Research Council, 2014); http://dx.doi.org/10.5285/f3c482e3-245e-36a5-e044-000b5de50f38

    Google Scholar 

  62. Casciotti, K., McIlvin, M. R., Forbes, M. S. & Sigman, D. Nitrate Isotopes of Nitrate in the GEOTRACES North Atantic Zonal Transect—Laboratory Casciotti (British Oceanographic Data Centre—Natural Environment Research Council, 2016); http://dx.doi.org/10.5285/2317515c-05c1-6d14-e053-6c86abc0690e

    Google Scholar 

  63. Casciotti, K. Nitrogen and Oxygen Isotope Measurements of Nitrate from CTD Bottles during Cruise AMT16 (D294) (British Oceanographic Data Centre—Natural Environment Research Council, 2015); http://dx.doi.org/10.5285/1d4233e0-58e4-637e-e053-6c86abc0ad64

    Google Scholar 

  64. Weigand, A., Marconi, D., Sigman, D. & Casciotti, K. Nitrate Isotopes of Nitrate in the US GEOTRACES North Atlantic Zonal Transect—Laboratory Sigman (British Oceanographic Data Centre—Natural Environment Research Council, 2016); http://dx.doi.org/10.5285/2317515c-05c0-6d14-e053-6c86abc0690e

    Google Scholar 

  65. Widdicombe, C., Tilstone, G. & Rees, A. AMT19 (JC039) Primary Production (Size-fractionated) Incubations Using 14C Uptake from CTD Bottle Samples (British Oceanographic Data Centre—Natural Environment Research Council, 2015); http://dx.doi.org/10.5285/1feecc3c-a422-5d7d-e053-6c86abc0435d

    Google Scholar 

  66. Waser, N. A. D. et al. Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean. Deep-Sea Res. I 47, 1207–1226 (2000).

    Google Scholar 

  67. Baker, A., Kelly, S., Biswas, K., Witt, M. & Jickells, T. Atmospheric deposition of nutrients to the Atlantic Ocean. Geophys. Res. Lett. 30, 2296 (2003).

    Google Scholar 

  68. Lewis, M. R., Harrison, W. G., Oakey, N. S., Herbert, D. & Platt, T. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–872 (1986).

    Google Scholar 

  69. Marconi, D. et al. Nitrate isotope distributions on the US GEOTRACES North Atlantic cross-basin section: signals of polar nitrate sources and low latitude nitrogen cycling. Mar. Chem. 177, 143–156 (2015).

    Google Scholar 

  70. Carpenter, E. J., Harvey, H. R., Fry, B. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I 44, 27–38 (1997).

    Google Scholar 

  71. Mahaffey, C., Williams, R. G., Wolff, G. A. & Anderson, W. T. Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Glob. Biogeochem. Cycles 18, GB1034 (2004).

    Google Scholar 

  72. Baker, A. R., Lesworth, T., Adams, C., Jickells, T. D. & Ganzeveld, L. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50° N to 50° S based on large-scale field sampling: fixed nitrogen and dry deposition of phosphorus. Glob. Biogeochem. Cycles 24, GB3006 (2010).

    Google Scholar 

  73. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Google Scholar 

  74. Knapp, A. N., Hastings, M. G., Sigman, D. M., Lipschultz, F. & Galloway, J. N. The flux and isotopic composition of reduced and total nitrogen in Bermuda rain. Mar. Chem. 120, 83–89 (2010).

    Google Scholar 

  75. Gobel, A. R., Altieri, K. E., Peters, A. J., Hastings, M. G. & Sigman, D. M. Insights into anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic composition of aerosol and rainwater nitrate. Geophys. Res. Lett. 40, 5977–5982 (2013).

    Google Scholar 

  76. Hastings, M. G., Sigman, D. M. & Lipschultz, F. Isotopic evidence for source changes of nitrate in rain at Bermuda. J. Geophys. Res. 108, 4790 (2003).

    Google Scholar 

  77. Mara, P. et al. Isotopic composition of nitrate in wet and dry atmospheric deposition on Crete in the eastern Mediterranean Sea. Glob. Biogeochem. Cycles 23, GB4002 (2009).

    Google Scholar 

  78. Le Moigne, F. A. et al. On the proportion of ballast versus non-ballast associated carbon export in the surface ocean. Geophys. Res. Lett. 39, L15610 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank the captains and crew of the RRS Discovery, RRS James Clark Ross and RRS James Cook during cruises D324, D334, JCR186, JCR215 and JC05 for deploying and recovering of the McLane sediment traps. We are grateful to M. Cooper, C. Marsay, P. Martin, A. Moje, P. Statham and M. Stinchcombe for their assistance with laboratory work and advice on analytical and sample-handling issues. We thank J. Prospero for providing the Barbados dust concentration data, and N. Mahowald for modelled dust deposition flux data. We thank the British Oceanographic Data Centre and NASA Ocean Colour, and Ocean Productivity website for providing ancillary data. We thank A. Poulton and R. Sanders for participation in results discussion and feedback on this manuscript. This work was funded by NERC Oceans 2025 project and EU FP7-ENV-2007-1 Collaborative Project 202955 EuroSITES, Integration and enhancement of key existing European deep-ocean observatories. This work is a part of doctoral dissertation of K.P. funded by National Oceanography Centre, Southampton and the University of Southampton. This study also contributes to the international IMBER project and was supported by the UK Natural Environment Research Council National Capability funding to Plymouth Marine Laboratory and the National Oceanography Centre, Southampton. This is contribution number 291 of the AMT programme.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and R.S.L. designed and conducted the research; K.P. analysed the data and wrote the manuscript together with R.S.L.; J.B., C.C., R.M., P.P. and C.P. coordinated sediment trap operations; F.A.C.L.M. and C.M.M. contributed to the interpretation of the results; A.P.R., G.H.T. and E.M.S.W. provided the ancillary biogeochemical data.

Corresponding author

Correspondence to Katsiaryna Pabortsava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabortsava, K., Lampitt, R., Benson, J. et al. Carbon sequestration in the deep Atlantic enhanced by Saharan dust. Nature Geosci 10, 189–194 (2017). https://doi.org/10.1038/ngeo2899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing