Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biotic and abiotic retention, recycling and remineralization of metals in the ocean

Abstract

Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of modes of 'new' iron supply (orange arrows) and iron retention mechanisms within the surface mixed layer.
Figure 2: Influence of different supply modes on surface mixed-layer iron (black) and the ratio of new versus recycled iron (red).
Figure 3: Mechanisms that set the different remineralization length scales evident for trace metals and major elements.

References

  1. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  Google Scholar 

  2. Moore, C.M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  Google Scholar 

  3. Cullen, J. T. & Sherrell, R. M. Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnol. Oceanogr. 50, 1193–1204 (2005).

    Article  Google Scholar 

  4. Koch, F. et al. The effect of vitamin B12 on phytoplankton growth and community structure in the Gulf of Alaska. Limnol. Oceanogr. 56, 1023–1034 (2011).

    Article  Google Scholar 

  5. Jickells, T. D. & Moore. C. M. The importance of atmospheric deposition for oceanic productivity. Annu. Rev. Ecol. Evol. Syst. 46, 481–501 (2015).

    Article  Google Scholar 

  6. Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    Article  Google Scholar 

  7. Fitzsimmons, J. N. et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171, 303–324 (2015).

    Article  Google Scholar 

  8. Twining, B. S., Rauschenberg, S., Morton, P. & Vogt, S. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean. Prog. Oceanogr. 137, 261–293 (2015).

    Article  Google Scholar 

  9. Karl, D. M. et al. in Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change (ed. Fasham, M. J. R.) Ch. 11 (Springer, 2003).

    Google Scholar 

  10. Weber, T., Cram, J. A., Leung S. W., DeVries T. & Deutsch C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    Article  Google Scholar 

  11. Bruland, K. W. & Lohan, M. C. in The Oceans and Marine Geochemistry: Treatise on Geochemistry (ed. Elderfield, H.) Ch. 6 (Elsevier, 2003).

    Google Scholar 

  12. Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol. 68, 1015–1024 (2002).

    Article  Google Scholar 

  13. Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).

    Article  Google Scholar 

  14. Quigg, A., Irwin, A. J. & Finkel, Z. V. Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc. R. Soc. Lond. B 278, 526–534 (2011).

    Article  Google Scholar 

  15. Singh, A., Baer, S. E., Riebesell, U., Martiny, A. C. & Lomas, M. W. C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean. Biogeosciences 12, 6389–6403 (2015).

    Article  Google Scholar 

  16. Martiny, A. C., Kathuria, S. K. & Berube P. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl Acad. Sci. USA 106, 10787–10792 (2009).

    Article  Google Scholar 

  17. http://www.geotraces.org/

  18. Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

    Article  Google Scholar 

  19. Boyd, P. W. et al. Microbial control of diatom bloom dynamics in the open ocean. Geophys. Res. Lett. 39, L18601 (2012).

    Article  Google Scholar 

  20. Bowie. A. R. et al. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2. Biogeosciences 12, 4421–4445 (2015).

    Article  Google Scholar 

  21. Fitzsimmons, J. N., Bundy, R. M., Al-Subiai, S. N., Barbeau, K. A. & Boyle, E. A. The composition of dissolved iron in the dusty surface ocean: an exploration using size-fractionated iron-binding ligands. Mar. Chem. 173, 125–135 (2015).

    Article  Google Scholar 

  22. Buck, K. N., Sohst B. & Sedwick, P. N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section. Deep-Sea Res. PT II. 116, 152–165 (2015).

    Article  Google Scholar 

  23. Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    Article  Google Scholar 

  24. Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochem. Cy. 30, GB005289 (2016).

    Article  Google Scholar 

  25. Adly, C. L. et al. Response of heterotrophic bacteria to mesoscale iron enrichment in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 60, 136–148 (2015).

    Article  Google Scholar 

  26. Bundy R. M., Jiang, M., Carter, M. & Barbeau, K. A. Iron-binding ligands in the southern California current system: mechanistic studies. Front. Mar. Sci. 3, 27 (2016).

    Article  Google Scholar 

  27. Lamborg, C. H., Buesseler, K. O. & Lam, P. J. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep-Sea Res. PT II 55, 1564–1577 (2008).

    Article  Google Scholar 

  28. Sedwick, P. N. et al. Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochem. Cy. 19, GB4006 (2005).

    Article  Google Scholar 

  29. Boyd, P. W. et al. Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems? Global Biogeochem. Cy. 29, 1028–1043 (2015).

    Article  Google Scholar 

  30. Twining, B. S. et al. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014).

    Article  Google Scholar 

  31. Tagliabue, A., Sallee, J.-B., Bowie, A. R., Levy, M., Swart, S. & Boyd, P. W. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314–320 (2014).

    Article  Google Scholar 

  32. Boyd, P. W. & Tagliabue, A. Using the L* concept to explore controls on the relationship between paired ligand and dissolved iron concentrations in the ocean. Mar. Chem. 173, 52–66 (2015).

    Article  Google Scholar 

  33. Bonnain, C., Breitbart, M & Buck, K. N. The ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).

    Article  Google Scholar 

  34. Wells, M. L., Mayer, L. M., Donard, O. F. X., de Souza Sierra, M. M. & Ackelson, S. G. The photolysis of colloidal iron in the oceans. Nature 353, 248–250 (1991).

    Article  Google Scholar 

  35. Barbeau, K. A. & Moffett, J. W. Dissolution of iron oxides by phagotrophic protists: using a novel method to quantify reaction rates. Environ. Sci. Technol. 32, 2969–2975 (1998).

    Article  Google Scholar 

  36. Rubin, M., Berman-Frank, I. & Shaked, Y. Dust-and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4, 529–534 (2011).

    Article  Google Scholar 

  37. Hopkinson, B. M. & Barbeau, K. Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnol. Oceanogr. 53, 1303–1318 (2008).

    Article  Google Scholar 

  38. Kirchman D. L. Microbial ferrous wheel. Nature 383, 303–304 (1996).

    Article  Google Scholar 

  39. Twining, B. S. & Baines S.B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).

    Article  Google Scholar 

  40. Marchetti, A. et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457, 467–470 (2009).

    Article  Google Scholar 

  41. Lis, H., Shaked, Y., Kranzler, C. Keren N. & Morel, F. M. M. Iron bioavailability to phytoplankton: an empirical approach. The ISME Journal 9, 1003–1013 (2015).

    Article  Google Scholar 

  42. Sunda W. G. & Huntsman S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).

    Article  Google Scholar 

  43. Melton, C. D., Swanner, E. D., Behrens, S., Schmidt C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Micro. 12, 797–808 (2014).

    Article  Google Scholar 

  44. Boyd P. W. et al. FeCycle: attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Global Biogeochem. Cy. 19, GB002494 (2005).

    Article  Google Scholar 

  45. Sarthou, G. et al., The fate of biotic iron during a phytoplankton bloom induced by natural fertilization: Impact of copepod grazing. Deep-Sea Res. PT II 55, 734–751 (2008).

    Article  Google Scholar 

  46. Smith, D. C., Simon, M., Alldredge, A. L. & Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142, (1992).

    Article  Google Scholar 

  47. Frew, R. D. et al. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global Biogeochem. Cy. 20, GB002558 (2006).

    Article  Google Scholar 

  48. Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508–512 (1999).

    Article  Google Scholar 

  49. Clegg, S. L. & Whitfield, M. A generalized model for the scavenging of trace metals in the open ocean—II. Thorium scavenging. Deep-Sea Res. 38, 91–120 (1991).

    Article  Google Scholar 

  50. Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: is there consensus? Prog. Oceanogr. 72, 276–312 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Jackson (Texas A&M University) and T. Kiørboe (Technical University of Denmark) for the provision of unpublished data/video footage. The authors acknowledge the role of collaborations with David Hutchins, Sylvia Sander, Robert Strzepek and Steve Wilhelm in developing this Perspective. The sinking particles presented in Supplementary Fig. 2c were collected by Z. Baumann (University of Connecticut) and analysed with the assistance of D. Ohnemus (Bigelow Laboratory for Ocean Sciences). This analysis used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Support was provided by Australian Research Council Australian Laureate Fellowship project FL160100131 and Antarctic Climate and Ecosystems Cooperative Research Centre funding to P.W.B., an Australian Research Council Discovery Project DP130100679 to M.J.E. and P.W.B. B.S.T. was supported by US National Science Foundation grant OCE-1232814. Model simulations by A.T. are supported by N8 HPC Centre of Excellence, provided and funded by the N8 consortium and EPSRC (Grant No. EP/K000225/1).

Author information

Authors and Affiliations

Authors

Contributions

P.W.B., M.J.E., A.T. and B.S.T. contributed equally to conceiving and developing the material presented, and to writing the paper.

Corresponding author

Correspondence to Philip W. Boyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures and Tables (PDF 853 kb)

Supplementary Video 1

Animation of heterotrophic microflagellatesattached to a particle and feeding on free-living and particle-attached bacteria. The particle was created from a latex bead coated in an organic substrate to promote microbial colonisation. The video reveals that the surface of such biogenic particles in the ocean is likely a 'hotspot' of iron recycling and release, the balance of which is dependent on the small scale trace metal chemistry as outlined in Figure 3 and S-Figure 2 (Courtesy of Thomas Kiørboe, Technical University of Denmark). (WMV 4026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, P., Ellwood, M., Tagliabue, A. et al. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nature Geosci 10, 167–173 (2017). https://doi.org/10.1038/ngeo2876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing