Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange

Abstract

Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans’ largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He—a non-reactive tracer of hydrothermal input—crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5–10 m yr−1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interpolated concentrations and station map along the US GEOTRACES GP16 Eastern Pacific Zonal Transect.
Figure 2: Illustration of Fe, Mn and 3Hexs transport and transformation along the SEPR hydrothermal plume.
Figure 3: Relationship between excess 3He and metal inventories in the dissolved and particulate phases in the SEPR hydrothermal plume (2,200–3,000 m).
Figure 4: Depth of peak concentrations in the SEPR hydrothermal plume.
Figure 5: Scanning transmission X-ray microscopy (STXM) images, elemental maps, and spectra for representative plume particles (>0.2 μm).
Figure 6: Dissolved and labile particulate δ56Fe results for hydrothermal depths 2,200–2,800 m.

Similar content being viewed by others

References

  1. German, C. R. & Seyfried, W. E. in Treatise on Geochemistry Vol. 8 2nd edn (eds Holland, H. D. & Turekian, K. K.) 191–233 (Elsevier, 2014).

    Book  Google Scholar 

  2. Sunda, W. G. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3, 204 (2012).

    Article  Google Scholar 

  3. Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Glob. Biogeochem. Cycles 30, 149–174 (2016).

    Article  Google Scholar 

  4. Field, M. P. & Sherrell, R. M. Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: slow Fe (II) oxidation kinetics in Pacific plumes. Geochim. Cosmochim. Acta 64, 619–628 (2000).

    Article  Google Scholar 

  5. German, C. R., Campbell, A. C. & Edmond, J. M. Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth Planet. Sci. Lett. 107, 101–114 (1991).

    Article  Google Scholar 

  6. Wu, J., Wells, M. L. & Rember, R. Dissolved iron anomaly in the deep tropical-subtropical Pacific: evidence for long-range transport of hydrothermal iron. Geochim. Cosmochim. Acta 75, 460–468 (2011).

    Article  Google Scholar 

  7. Fitzsimmons, J. N., Jenkins, W. J. & Boyle, E. A. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc. Natl Acad. Sci. USA 111, 16654–16661 (2014).

    Article  Google Scholar 

  8. Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–206 (2015).

    Article  Google Scholar 

  9. Noble, A. E. et al. Basin-scale inputs of cobalt, iron, and manganese from the Benguela–Angola front to the South Atlantic Ocean. Limnol. Oceanogr. 57, 989–1010 (2012).

    Article  Google Scholar 

  10. Fitzsimmons, J. N. et al. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Res. II 116, 130–151 (2015).

    Article  Google Scholar 

  11. Nishioka, J., Obata, H. & Tsumune, D. Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean. Earth Planet. Sci. Lett. 361, 26–33 (2013).

    Article  Google Scholar 

  12. Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & van Ooijen, J. C. Dissolved iron in the Southern Ocean (Atlantic sector). Deep-Sea Res. II 58, 2678–2694 (2011).

    Article  Google Scholar 

  13. Hawkes, J. A., Connelly, D. P., Rijkenberg, M. J. A. & Achterberg, E. P. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry. Geophys. Res. Lett. 41, 2013GL058817 (2014).

    Article  Google Scholar 

  14. Klunder, M. B., Laan, P., Middag, R., de Baar, H. J. W. & Bakker, K. Dissolved iron in the Arctic Ocean: important role of hydrothermal sources, shelf input and scavenging removal. J. Geophys. Res. 117, C04014 (2012).

    Article  Google Scholar 

  15. Yucel, M., Gartman, A., Chan, C. S. & Luther, G. W. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci. 4, 367–371 (2011).

    Article  Google Scholar 

  16. Sands, C. M., Connelly, D. P., Statham, P. J. & German, C. R. Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean. Earth Planet. Sci. Lett. 319–320, 15–22 (2012).

    Article  Google Scholar 

  17. Gartman, A., Findlay, A. J. & Luther, G. W. III Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366, 32–41 (2014).

    Article  Google Scholar 

  18. Bennett, S. A. et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet. Sci. Lett. 270, 157–167 (2008).

    Article  Google Scholar 

  19. Sander, S. G. & Koschinsky, A. Metal flux from hydrothermal vents increased by organic complexation. Nat. Geosci. 4, 145–150 (2011).

    Article  Google Scholar 

  20. Hawkes, J. A., Connelly, D. P., Gledhill, M. & Achterberg, E. P. The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems. Earth Planet. Sci. Lett. 375, 280–290 (2013).

    Article  Google Scholar 

  21. Feely, R. A. et al. Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise. Geochim. Cosmochim. Acta 60, 2297–2323 (1996).

    Article  Google Scholar 

  22. Boström, K., Peterson, M. N. A., Joensuu, O. & Fisher, D. E. Aluminum-poor ferromanganoan sediments on active oceanic ridges. J. Geophys. Res. 74, 3261–3270 (1969).

    Article  Google Scholar 

  23. Lupton, J. Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res. 103, 15853–15868 (1998).

    Article  Google Scholar 

  24. Black, E. E., Buesseler, K. O., Pike, S. M., Lam, P. J. & Charette, M. A. 234Th Distribution along the Eastern Pacific GEOTRACES Transect and Implications for Export and Remineralization Fluxes of Carbon and TEIs Ocean Sciences Meeting, New Orleans, Louisiana. CT24A-0140 (2016).

  25. Hautala, S. L. & Riser, S. C. A nonconservative β-spiral determination of the deep circulation in the Eastern South Pacific. J. Phys. Oceanogr. 23, 1975–2000 (1993).

    Article  Google Scholar 

  26. Faure, V. & Speer, K. Deep circulation in the eastern South Pacific Ocean. J. Mar. Res. 70, 748–778 (2012).

    Article  Google Scholar 

  27. Toner, B. M. et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nat. Geosci. 2, 197–201 (2009).

    Article  Google Scholar 

  28. Cowen, J. P., Massoth, G. J. & Baker, E. T. Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322, 169–171 (1986).

    Article  Google Scholar 

  29. Cowen, J. P., Massoth, G. J. & Feely, R. A. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep-Sea Res. A 37, 1619–1637 (1990).

    Article  Google Scholar 

  30. Nealson, K. H., Tebo, B. M. & Rosson, R. A. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33, 279–318 (1988).

    Article  Google Scholar 

  31. Toner, B. M. et al. The Speciation of Particulate Iron and Carbon in the East Pacific Rise 15 °S Near-Field Hydrothermal Plume and Underlying Sediments AGU Fall Meeting (2014).

  32. Dauphas, N. & Rouxel, O. Mass spectrometry and natural variations of iron isotopes. Mass Spectrom. Rev. 25, 515–550 (2006).

    Article  Google Scholar 

  33. Wells, M. L. & Goldberg, E. D. Marine submicron particles. Mar. Chem. 40, 5–18 (1992).

    Article  Google Scholar 

  34. Bennett, S. A. et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5S Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 5619–5634 (2009).

    Article  Google Scholar 

  35. Dideriksen, K., Baker, J. A. & Stipp, S. L. S. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth Planet. Sci. Lett. 269, 280–290 (2008).

    Article  Google Scholar 

  36. Morgan, J. L. L., Wasylenki, L. E., Nuester, J. & Anbar, A. D. Fe isotope fractionation during equilibration of Fe-organic complexes. Environ. Sci. Technol. 44, 6095–6101 (2010).

    Article  Google Scholar 

  37. Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58, 3171–3182 (1994).

    Article  Google Scholar 

  38. Conway, T. M. & John, S. G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes. Geochim. Cosmochim. Acta 164, 262–283 (2015).

    Article  Google Scholar 

  39. Radic, A., Lacan, F. & Murray, J. W. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 306, 1–10 (2011).

    Article  Google Scholar 

  40. Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012).

    Google Scholar 

  41. Dick, G. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).

    Article  Google Scholar 

  42. Bennett, S. A. et al. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep-Sea Res. I 58, 922–931 (2011).

    Article  Google Scholar 

  43. Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  44. Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004).

    Article  Google Scholar 

  45. Fitzsimmons, J. N. et al. Dissolved iron and iron isotopes in the Southeastern Pacific Ocean. Glob. Biogeochem. Cycles 30, 1372–1395 (2016).

    Article  Google Scholar 

  46. Goldberg, E. D. Marine Geochemistry 1. Chemical Scavengers of the Sea. J. Geol. 62, 249–265 (1954).

    Google Scholar 

  47. Koschinsky, A. & Hein, J. R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar. Geol. 198, 331–351 (2003).

    Google Scholar 

  48. Völker, C. & Tagliabue, A. Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model. Mar. Chem. 173, 67–77 (2015).

    Article  Google Scholar 

  49. Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).

    Article  Google Scholar 

  50. Revels, B. N., Zhang, R., Adkins, J. F. & John, S. G. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochim. Cosmochim. Acta 166, 92–104 (2015).

    Article  Google Scholar 

  51. Cutter, G. A. & Bruland, K. W. Rapid and noncontaminating sampling system for trace elements in a global ocean surveys. Limnol. Oceanogr. 10, 425–436 (2012).

    Article  Google Scholar 

  52. Planquette, H. & Sherrell, R. M. Sampling for particulate trace element determination using water sampling bottles: methodology and comparison to in situ pumps. Limnol. Oceanogr. 10, 367–388 (2012).

    Article  Google Scholar 

  53. Fitzsimmons, J. N. & Boyle, E. A. Assessment and comparison of Anopore and cross flow filtration methods for the determination of dissolved iron size fractionation into soluble and colloidal phases in seawater. Limnol. Oceanogr. 12, 244–261 (2014).

    Article  Google Scholar 

  54. Conway, T. M., Rosenberg, A. D., Adkins, J. F. & John, S. G. A new method for precise determination of iron, zinc, and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52 (2013).

    Article  Google Scholar 

  55. Lam, P. J., Ohnemus, D. C. & Auro, M. E. Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep-Sea Res. II 116, 303–320 (2015).

    Article  Google Scholar 

  56. McDonnell, A. M. P. et al. The oceanographic toolbox for the collection of sinking and suspended marine particles. Prog. Oceanogr. 133, 17–31 (2015).

    Article  Google Scholar 

  57. Kilcoyne, A. L. D. et al. Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. J. Synchrotron Radiat. 10, 125–136 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Forsch and A. Malinina for assistance with particulate metal digestions and R. Bu for mass spectrometry support; P. Lam for leading the McLane pump team and designing the filter manifold used for STXM sample collection; S. Rauschenberg, C. Parker, C. Zurbrick, L. Richards, D. Ohnemus and the McLane pump team for help sampling on the GP16 cruise; J. Helgoe and E. Townsend for assistance with sample processing for dissolved δ56Fe; D. Kilcoyne for STXM training and guidance, and R. Sims and B. Cron for beamtime support; and J. Moffett and G. Cutter for their cruise leadership on GP16, as well as the support of the officers and crew of the RV Thomas G Thompson. D. Ohnemus and B. Twining participated in data quality control discussions and intercalibration of the particulate metal measurements, and J. Resing, P. Sedwick and B. Jenkins provided access to their published dissolved Fe, Mn, and 3He data sets and participated in helpful conversations about our data interpretation. This work was funded by the National Science Foundation (OCE-1234827 to R.M.S. and C.R.G., OCE-1235248 to C.R.G., OCE-1232986 to B.M.T., and OCE-1649435 and OCE-1649439 to S.G.J.). The Advance Light Source is supported by the Director, Office of Basic Energy Sciences, of the US Department of Energy under contract No. DE-AC02-05CF11231.

Author information

Authors and Affiliations

Authors

Contributions

J.N.F. determined the digested particulate metal concentrations, led data interpretation, and wrote the manuscript. R.M.S., C.R.G. and B.M.T. co-proposed the particulate studies. R.M.S., S.L.N. and C.R.G. collected samples on the GP16 cruise (C.R.G. as Chief Scientist). S.G.J. and C.M.M. made the Fe isotope measurements. C.L.H. and B.M.T. made the synchrotron measurements. All authors helped to refine the interpretation and contributed to manuscript revisions.

Corresponding author

Correspondence to Jessica N. Fitzsimmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzsimmons, J., John, S., Marsay, C. et al. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nature Geosci 10, 195–201 (2017). https://doi.org/10.1038/ngeo2900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing