Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistence of strong silica-enriched domains in the Earth’s lower mantle

Abstract

The composition of the lower mantle—comprising 56% of Earth’s volume—remains poorly constrained. Among the major elements, Mg/Si ratios ranging from 0.9–1.1, such as in rocky Solar-System building blocks (or chondrites), to 1.2–1.3, such as in upper-mantle rocks (or pyrolite), have been proposed. Geophysical evidence for subducted lithosphere deep in the mantle has been interpreted in terms of efficient mixing, and thus homogenous Mg/Si across most of the mantle. However, previous models did not consider the effects of variable Mg/Si on the viscosity and mixing efficiency of lower-mantle rocks. Here, we use geodynamic models to show that large-scale heterogeneity associated with a 20-fold change in viscosity, such as due to the dominance of intrinsically strong (Mg, Fe)SiO3–bridgmanite in low-Mg/Si domains, is sufficient to prevent efficient mantle mixing, even on large scales. Models predict that intrinsically strong domains stabilize mantle convection patterns, and coherently persist at depths of about 1,000–2,200 km up to the present-day, separated by relatively narrow up-/downwelling conduits of pyrolitic material. The stable manifestation of such bridgmanite-enriched ancient mantle structures (BEAMS) may reconcile the geographical fixity of deep-rooted mantle upwelling centres, and geophysical changes in seismic-tomography patterns, radial viscosity, rising plumes and sinking slabs near 1,000 km depth. Moreover, these ancient structures may provide a reservoir to host primordial geochemical signatures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicted evolution of the mantle for two regimes of mixing.
Figure 2: Summary of numerical-model results.
Figure 3: Map with possible distributions of BEAMS in the Earth’s lower mantle.
Figure 4: Illustration of the BEAMS hypothesis.

Similar content being viewed by others

References

  1. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    Article  Google Scholar 

  2. Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    Article  Google Scholar 

  3. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  4. Marquardt, H. & Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).

    Article  Google Scholar 

  5. Rudolph, M., Lekic, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Article  Google Scholar 

  6. Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at 1,000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article  Google Scholar 

  7. Badro, J., Côté, A. S. & Brodholt, J. P. A seismologically consistent compositional model of Earth’s core. Proc. Natl Acad. Sci. USA 111, 7542–7545 (2014).

    Article  Google Scholar 

  8. Yamazaki, D. & Karato, S.-I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001).

    Article  Google Scholar 

  9. Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S.-I. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).

    Article  Google Scholar 

  10. Manga, M. Low-viscosity mantle blobs are sampled preferentially at regions of surface divergence and stirred rapidly into the mantle. Phys. Earth Planet. Inter. 180, 104–107 (2010).

    Article  Google Scholar 

  11. Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 108, 2125 (2003).

    Article  Google Scholar 

  12. Kellogg, L. in Advances in Geophysics Vol. 34 (eds Dmowska, R. & Saltzman, B.) 1–33 (Academic, 1993).

    Google Scholar 

  13. Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 74, 125–137 (1999).

    Article  Google Scholar 

  14. Dupré, B. & Allègre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983).

    Article  Google Scholar 

  15. Schubert, G. & Spohn, T. Two-layer mantle convection and the depletion of radioactive elements in the lower mantle. Geophys. Res. Lett. 8, 951–954 (1981).

    Article  Google Scholar 

  16. Dziewonski, A. & Anderson, D. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  17. Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–95 (2012).

    Article  Google Scholar 

  18. Ismailova, L. et al. Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Sci. Adv. 2, e1600427 (2016).

    Article  Google Scholar 

  19. Matas, J., Bass, J., Ricard, Y., Mattern, E. & Bukowinski, M. On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys. J. Int. 170, 764–780 (2007).

    Article  Google Scholar 

  20. Wang, X., Tsuchiya, T. & Hase, A. Computational support for a pyrolitic lower mantle containing ferric iron. Nat. Geosci. 8, 556–559 (2015).

    Article  Google Scholar 

  21. Hyung, E., Huang, S., Petaev, M. I. & Jacobsen, S. B. Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet. Sci. Lett. 440, 158–168 (2016).

    Article  Google Scholar 

  22. Hernlund, J. & Houser, C. On the distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).

    Article  Google Scholar 

  23. Houser, C. & Williams, Q. The relative wavelengths of fast and slow velocity anomalies in the lower mantle: contrary to the expectations of dynamics? Phys. Earth Planet. Inter. 176, 187–197 (2009).

    Article  Google Scholar 

  24. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).

    Article  Google Scholar 

  25. Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Article  Google Scholar 

  26. Dziewonski, A., Lekic, V. & Romanowicz, B. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Article  Google Scholar 

  27. Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).

    Article  Google Scholar 

  28. Becker, T. & Faccenna, C. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett. 310, 453–461 (2011).

    Article  Google Scholar 

  29. Faccenna, C., Becker, T., Conrad, C. & Husson, L. Mountain building and mantle dynamics. Tectonics 32, 80–93 (2013).

    Article  Google Scholar 

  30. Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).

    Article  Google Scholar 

  31. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  32. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  Google Scholar 

  33. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349, 198–208 (2012).

    Article  Google Scholar 

  34. Ballmer, M. D., Schumacher, L., Lekic, V., Thomas, C. & Ito, G. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochem. Geophys. Geosyst. 17, 5056–5077 (2016).

    Article  Google Scholar 

  35. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  Google Scholar 

  36. Tan, E. & Gurnis, M. Compressible thermochemical convection and application to lower mantle structures. J. Geophys. Res. 112, B06304 (2007).

    Google Scholar 

  37. Jenkins, J., Deuss, A. & Cottaar, S. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth Planet. Sci. Lett. 459, 196–207 (2016).

    Article  Google Scholar 

  38. Tsujino, N. et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 539, 81–84 (2016).

    Article  Google Scholar 

  39. Wookey, J. & Kendall, J.-M. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. J. Geophys. Res. 109, B07309 (2004).

    Article  Google Scholar 

  40. Chang, S.-J., Ferreira, A. M. & Faccenda, M. Upper-and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs. Nat. Commun. 7, 10799 (2016).

    Article  Google Scholar 

  41. Kaminski, E. & Javoy, M. A two-stage scenario for the formation of the Earth’s mantle and core. Earth Planet. Sci. Lett. 365, 97–107 (2013).

    Article  Google Scholar 

  42. Elkins-Tanton, L. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  Google Scholar 

  43. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  Google Scholar 

  44. Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).

    Article  Google Scholar 

  45. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article  Google Scholar 

  46. Hart, S. & Hauri, E. et al. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).

    Article  Google Scholar 

  47. White, W. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem. Geol. 419, 10–28 (2015).

    Article  Google Scholar 

  48. Garapić, G., Mallik, A., Dasgupta, R. & Jackson, M. G. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? Am. Mineral. 100, 2066–2081 (2015).

    Article  Google Scholar 

  49. Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).

    Article  Google Scholar 

  50. Parmentier, E. M., Turcotte, D. L. & Torrance, K. E. Studies of finite amplitude non-Newtonian thermal convection with application to convection in the Earth’s mantle. J. Geophys. Res. 81, 1839–1846 (1976).

    Article  Google Scholar 

  51. Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    Article  Google Scholar 

  52. Moresi, L., Zhong, S. & Gurnis, M. The accuracy of finite element solutions of Stokes’s flow with strongly varying viscosity. Phys. Earth Planet. Inter. 97, 83–94 (1996).

    Article  Google Scholar 

  53. Ballmer, M., Van Hunen, J., Ito, G., Bianco, T. & Tackley, P. Intraplate volcanism with complex age-distance patterns: a case for small-scale sublithospheric convection. Geochem. Geophys. Geosyst. 10, Q06015 (2009).

    Article  Google Scholar 

  54. Lay, T., Hernlund, J. & Buffett, B. A. Core–mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).

    Article  Google Scholar 

  55. Nomura, R. et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).

    Article  Google Scholar 

  56. Shukla, G. et al. Thermoelasticity of Fe2+-bearing bridgmanite. Geophys. Res. Lett. 42, 1741–1749 (2015).

    Article  Google Scholar 

  57. Wu, Z., Justo, J., da Silva, C., de Gironcoli, S. & Wentzcovitch, R. M. Anomalous thermodynamic properties in ferropericlase throughout its spin crossover transition. Phys. Rev. B 80, 014409 (2009).

    Article  Google Scholar 

  58. Wu, Z., Justo, J. & Wentzcovitch, R. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. Phys. Rev. Lett. 110, 228501 (2013).

    Article  Google Scholar 

  59. Kawai, K. & Tsuchiya, T. P–V–T equation of state of cubic CaSiO3 perovskite from first-principles computation. J. Geophys. Res. 119, 2801–2809 (2014).

    Article  Google Scholar 

  60. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article  Google Scholar 

  61. Baker, M. & Beckett, J. The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth Planet. Sci. Lett. 171, 49–61 (1999).

    Article  Google Scholar 

  62. McDonough, W. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  63. Williams, Q. & Knittle, E. Earth’s deep mantle: structure, composition, and evolution. Geophys. Monog. Series 160, 187–199 (2005).

    Google Scholar 

  64. Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).

    Article  Google Scholar 

  65. Irifune, T. et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F. Deschamps for comments that helped to improve the manuscript. They are further grateful to A. Dziewonski for discussions on the seismic structure and dynamics of the mantle. Calculations have been performed on akua, the in-house cluster of the Department of Geology & Geophysics, University of Hawaii. M.D.B., C.H., J.W.H. and K.H. were supported by the WPI-funded Earth-Life Science Institute at Tokyo Institute of Technology. C.H., J.W.H., and K.H. received further support through MEXT KAKENHI grant numbers 15H05832 and 16H06285. R.M.W. was funded through NSF grants EAR-1319361 and EAR-1348066.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B., C.H. and J.W.H. wrote the manuscript and composed the figures. M.D.B. performed and analysed geodynamic models. C.H. and R.M.W. computed seismic velocities in the lower mantle. J.W.H. and K.H. analysed the influence of composition on density and viscosity. All authors contributed to the BEAMS hypothesis, and the design of the study.

Corresponding author

Correspondence to Maxim D. Ballmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2186 kb)

Supplementary Movies

Supplementary Movies (MOV 33633 kb)

Supplementary Movies

Supplementary Movies (MOV 11229 kb)

Supplementary Movies

Supplementary Movies (MOV 9042 kb)

Supplementary Movies

Supplementary Movies (MOV 3343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballmer, M., Houser, C., Hernlund, J. et al. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geosci 10, 236–240 (2017). https://doi.org/10.1038/ngeo2898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing