Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake

Abstract

Large earthquakes are usually assumed to release all of the strain accumulated since the previous event, implying a reduced seismic hazard after them. However, long records of seismic history at several subduction zones suggest supercycle behaviour, where centuries-long accumulated strain is released through clustered large earthquakes, resulting in an extended period of enhanced seismic hazard. Here we combine historical seismology results, present-day geodesy data, and dense local observations of the recent Mw 7.8 2016 Pedernales earthquake to reconstruct the strain budget at the Ecuador subduction zone since the great 1906 earthquake. We show that the Pedernales earthquake involved the successive rupture of two patches on the plate interface that were locked prior to the earthquake and most probably overlaps the area already ruptured in 1942 by a similar earthquake. However, we find that coseismic slip in 2016 exceeds the deficit accumulated since 1942. The seismic moment of every large earthquake during the twentieth century further exceeds the moment deficit accumulated since 1906. These results, together with the seismic quiescence before 1906 highlighted by historical records and marine palaeoseismology, argue for an earthquake supercycle at the Ecuador–Colombia margin. This behaviour, which has led to an enhanced seismic hazard for 110 years, is possibly still going on and may apply to other subduction zones that recently experienced a great earthquake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previous large earthquakes and interseismic coupling map along the central Ecuador–southern Colombia subduction zone.
Figure 2: Coseismic static displacements from GPS and InSAR.
Figure 3: Time evolution of the rupture and fit to HRGPS and accelerometer data.
Figure 4: Spatial slip distribution of the 2016 Pedernales earthquake.

Similar content being viewed by others

References

  1. Kelleher, J. A. Rupture zones of large South American earthquakes and some predictions. J. Geophys. Res. 77, 2087–2103 (1972).

    Article  Google Scholar 

  2. Kanamori, H. & McNally, K. Variable rupture mode of the suduction zone along the Ecuador-Colombia coast. Bull. Seismol. Soc. Am. 72, 1241–1253 (1982).

    Google Scholar 

  3. Beck, S. L. & Ruff, L. J. The rupture process of the Great 1979 Colombia Earthquake: evidence for the asperity model. J. Geophys. Res. Solid Earth 89, 9281–9291 (1984).

    Article  Google Scholar 

  4. Mendoza, C. & Dewey, J. W. Seismicity associated with the great Colombia-Ecuador earthquakes of 1942, 1958 and 1979: implications for barrier models of earthquake rupture. Bull. Seismol. Soc. Am. 74, 577–593 (1984).

    Google Scholar 

  5. Swenson, J. L. & Beck, S. L. Historical 1942 Ecuador and 1942 Peru subduction earthquakes, and earthquake cycles along Colombia-Ecuador and Peru subduction segments. Pure Appl. Geophys. 146, 67–101 (1996).

    Article  Google Scholar 

  6. Abe, K. Size of great earthquakes of 1837–1974 inferred from tsunami data. J. Geophys. Res. 84, 1561–1568 (1979).

    Article  Google Scholar 

  7. Okal, E. A. Use of the mantle magnitude Mm for the reassessment of the moment of historical earthquakes. Pure Appl. Geophys. 139, 17–57 (1992).

    Article  Google Scholar 

  8. Ye, L. et al. The 16 April 2016, Mw 7.8 (Ms 7.5) Ecuador earthquake: a quasi-repeat of the 1942 Ms 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia–Ecuador earthquake. Earth Planet. Sci. Lett. 454, 248–258 (2016).

    Article  Google Scholar 

  9. Pennington, W. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 86, 10753–10770 (1981).

    Article  Google Scholar 

  10. Trenkamp, R., Kellogg, J. N., Freymueller, J. T. & Mora, H. P. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 15, 157–171 (2002).

    Article  Google Scholar 

  11. White, S. M., Trenkamp, R. & Kellogg, J. N. Recent crustal deformation and the earthquake cycle along the Ecuador-Colombia subduction zone. Earth Planet. Sci. Lett. 216, 231–242 (2003).

    Article  Google Scholar 

  12. Nocquet, J.-M. et al. Motion of continental slivers and creeping subduction in the northern Andes. Nat. Geosci. 7, 287–292 (2014).

    Article  Google Scholar 

  13. Nocquet, J.-M. et al. Addendum: motion of continental slivers and creeping subduction in the northern Andes. Nat. Geosci. 7, 612 (2014).

    Article  Google Scholar 

  14. Alvarado, A. et al. Partitioning of oblique convergence in the Northern Andes subduction zone: migration history and the present-day boundary of the North Andean Sliver in Ecuador. Tectonics 35, 1048–1065 (2016).

    Article  Google Scholar 

  15. Yepes, H. et al. A new view for the geodynamics of Ecuador: implication in seismogenic source definition and seismic hazard assessment. Tectonics 35, 1249–1279 (2016).

    Article  Google Scholar 

  16. Kendrick, E. et al. The Nazca–South America Euler vector and its rate of change. J. South Am. Earth Sci. 16, 125–131 (2003).

    Article  Google Scholar 

  17. Chlieh, M. et al. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet. Sci. Lett. 400, 292–301 (2014).

    Article  Google Scholar 

  18. http://www.igepn.edu.ec/eq20160416-home

  19. Moreno, M., Rosenau, M. & Oncken, O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467, 198–202 (2010).

    Article  Google Scholar 

  20. Protti, M. et al. Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat. Geosci. 7, 6–10 (2013).

    Google Scholar 

  21. Storchak, D. A. et al. The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): introduction. Phys. Earth Planet. Inter. 239, 48–63 (2015).

    Article  Google Scholar 

  22. Ide, S., Baltay, A. & Beroza, G. C. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 332, 1426–1429 (2011).

    Article  Google Scholar 

  23. Moreno, M. et al. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet. Sci. Lett. 321–322, 152–165 (2012).

    Article  Google Scholar 

  24. Vallée, M. & Satriano, C. Ten year recurrence time between two major earthquakes affecting the same fault segment. Geophys. Res. Lett. 41, 2312–2318 (2014).

    Article  Google Scholar 

  25. Yin, J., Yang, H., Yao, H. & Weng, H. Coseismic radiation and stress drop during the 2015 Mw 8.3 Illapel, Chile megathrust earthquake. Geophys. Res. Lett. 43, 1520–1528 (2016).

    Article  Google Scholar 

  26. Ben-Zion, Y. & Rice, J. R. Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res. Solid Earth 102, 17771–17784 (1997).

    Article  Google Scholar 

  27. Cisternas, M. et al. Predecessors of the giant 1960 Chile earthquake. Nature 437, 404–407 (2005).

    Article  Google Scholar 

  28. Yagi, Y. & Fukahata, Y. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett. 38, L19307 (2011).

    Article  Google Scholar 

  29. Perfettini, H. & Avouac, J.-P. Stress transfer and strain rate variations during the seismic cycle. J. Geophys. Res. Solid Earth 109, B06402 (2004).

    Google Scholar 

  30. Mavrommatis, A. P., Segall, P. & Johnson, K. M. A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 41, 4486–4494 (2014).

    Article  Google Scholar 

  31. Scholz, C. H. & Campos, J. The seismic coupling of subduction zones revisited. J. Geophys. Res. Solid Earth 117, B05310 (2012).

    Article  Google Scholar 

  32. Bürgmann, R. et al. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. 110, B07405 (2005).

    Article  Google Scholar 

  33. Beauval, C. et al. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996). Geophys. J. Int. 181, 1613–1633 (2010).

    Google Scholar 

  34. Beauval, C. et al. An earthquake catalog for seismic hazard assessment in Ecuador. Bull. Seismol. Soc. Am. 103, 773–786 (2013).

    Article  Google Scholar 

  35. Kaneko, Y., Avouac, J.-P. & Lapusta, N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat. Geosci. 3, 363–369 (2010).

    Article  Google Scholar 

  36. Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322, 1674–1678 (2008).

    Article  Google Scholar 

  37. Weldon, R., Scharer, K., Fumal, T. & Biasi, G. Wrightwood and the earthquake cycle: what a long recurrence record tells us about how faults work. Geol. Soc. Am. Today 14, 4–10 (2004).

    Google Scholar 

  38. Schlagenhauf, A. et al. Earthquake supercycles in Central Italy, inferred from 36Cl exposure dating. Earth Planet. Sci. Lett. 307, 487–500 (2011).

    Article  Google Scholar 

  39. Goldfinger, C., Ikeda, Y., Yeats, R. S. & Ren, J. Superquakes and supercycles. Seismol. Res. Lett. 84, 24–32 (2013).

    Article  Google Scholar 

  40. Migeon, S. et al. Earthquake-triggered deposits in the subduction trench of the North Ecuador/South Colombia margin and their implication for paleoseismology. Mar. Geol. http://dx.doi.org/10.1016/j.margeo.2016.09.008 (2016).

  41. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res. Solid Earth 117, B01302 (2012).

    Article  Google Scholar 

  42. Herring, T. A., King, R. W., Floyd, M. A. & McClusky, S. C. GAMIT/GLOBK Reference Manual, 10.6 (MIT, 2015).

    Google Scholar 

  43. Mothes, P. A., Nocquet, J.-M. & Jarrín, P. Continuous GPS network operating throughout Ecuador. EOS, Trans. Am. Geophys. Union 94, 229–231 (2013).

    Article  Google Scholar 

  44. Grandin, R. Interferometric processing of SLC Sentinel-1 TOPS data. Proc. 2015 ESA Fringe Workshop European Space Agency Special Publication Vol. SP-731 (European Space Agency, 2015).

    Google Scholar 

  45. Grandin, R., Klein, E., Métois, M. & Vigny, C. Three-dimensional displacement field of the 2015 Mw 8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 43, 2552–2561 (2016).

    Article  Google Scholar 

  46. Rosen, P. A., Hensley, S., Peltzer, G. & Simons, M. Updated repeat orbit interferometry package released. EOS, Trans. Am. Geophys. Union 85, 47 (2004).

    Article  Google Scholar 

  47. Sandwell, D., Mellors, R., Tong, X., Wei, M. & Wessel, P. Open radar interferometry software for mapping surface deformation. EOS Trans. Am. Geophys. Union 92, 234 (2011).

    Article  Google Scholar 

  48. Farr, T. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. EOS Trans. Am. Geophys. Union 81, 583–585 (2000).

    Article  Google Scholar 

  49. Goldstein, R. M. & Werner, C. L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25, 4035–4038 (1998).

    Article  Google Scholar 

  50. Goldstein, R. M., Zebker, H. A. & Werner, C. L. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988).

    Article  Google Scholar 

  51. Delouis, B., Giardini, D., Lundgren, P. & Salichon, J. Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 İzmit mainshock. Bull. Seismol. Soc. Am. 92, 278–299 (2002).

    Article  Google Scholar 

  52. Bletery, Q. et al. A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. J. Geophys. Res. B 119, 7636–7653 (2014).

    Article  Google Scholar 

  53. Grandin, R. et al. Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): insights into Himalayan megathrust segmentation. Geophys. Res. Lett. 42, 8373–8382 (2015).

    Article  Google Scholar 

  54. Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

    Article  Google Scholar 

  55. Vallée, M., Charléty, J., Ferreira, A., Delouis, B. & Vergoz, J. SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys. J. Int. 184, 338–358 (2011).

    Article  Google Scholar 

  56. Bouchon, M. A simple method to calculate Green’s functions for elastic layered media. Bull. Seismol. Soc. Am. 71, 959–971 (1981).

    Google Scholar 

  57. Bouchon, M. Teleseismic body wave radiation from a seismic source in a layered medium. Geophys. J. Int. 47, 515–530 (1976).

    Article  Google Scholar 

  58. Wang, R., Mart, F. L. & Roth, F. Computation of deformation induced by earthquakes in a multi-layered elastic crust — FORTRAN programs. 29, 195–207 (2003).

  59. Vallée, M. Stabilizing the empirical Green function analysis: development of the projected Landweber method. Bull. Seismol. Soc. Am. 94, 394–409 (2004).

    Article  Google Scholar 

  60. Heinrich, P., Schindele, F., Guibourg, S. & Ihmlé, P. F. Modeling of the February 1996 Peruvian Tsunami. Geophys. Res. Lett. 25, 2687–2690 (1998).

    Article  Google Scholar 

  61. Tanioka, Y. & Satake, K. Tsunami generation by horizontal displacement of ocean bottom. Geophys. Res. Lett. 23, 861–864 (1996).

    Article  Google Scholar 

  62. Bletery, Q., Sladen, A., Delouis, B. & Mattéo, L. Quantification of Tsunami bathymetry effect on finite fault slip inversion. Pure Appl. Geophys. 172, 3655–3670 (2015).

    Article  Google Scholar 

  63. Font, Y., Segovia, M., Vaca, S. & Theunissen, T. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model. Geophys. J. Int. 193, 263–286 (2013).

    Article  Google Scholar 

  64. Bilek, S. L. & Lay, T. Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400, 443–446 (1999).

    Article  Google Scholar 

  65. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  66. Savage, J. C. A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. 88, 4984–4996 (1983).

    Article  Google Scholar 

  67. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).

    Book  Google Scholar 

  68. Stark, P. & Parker, R. Bounded-variable least-squares: an algorithm and applications. Comput. Stat. 10, 129–141 (1995).

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Institut de Recherche pour le Développement of France (IRD) and the Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador in the frame of the Joint International Laboratory ‘Earthquakes and Volcanoes in the Northern Andes’ (grant IRD 303759/00). Previous funding from the Agence Nationale de la Recherche of France (grant ANR-07-BLAN-0143-01), Programme National de Télédétection Spatiale (grant PNTS-2015-09), SENESCYT (grant Fortalecimiento del Instituto Geofísico) and SENPLADES (grant Generación de Capacidades para la Difusión de Alertas Tempranas) from Ecuador is acknowledged. We thank the Instituto Geográfico Militar (IGM) and the OCP from Ecuador, and the Servicio Geológico Colombiano, Proyecto GeoRED from Colombia for the use of their data. We are grateful to the global broadband seismic networks belonging to the FDSN (in particular IRIS and GEOSCOPE) and IGS contributors for free access to their broadband seismic and GPS data. Support from the ANR JCJ EPOST (grant ANR-14-CE03-0002) and the IRD office in Ecuador during the analysis and the post-earthquake survey is acknowledged. Finally, we acknowledge M. Ruiz and A. Alvarado from IGEPN for the logistic support during the weeks following the earthquake and G. Ponce for her help with the seismological data.

Author information

Authors and Affiliations

Authors

Contributions

J.-M.N. coordinated the work and wrote the paper with F.R., M.V., R.G. and H.Y. P.A.M., A.S. and P.C. edited the paper. M.V. and B.D. performed the kinematic slip inversion. R.G. carried out InSAR analysis. D.F., S.H. and B.D. determined the epicentre location. A.L. and J.-C.S. performed the accelerometer data analysis. A.S. carried out the tsunami analysis. J.-M.N., F.R., P.J. and D.C. performed GPS analysis. Y.F., P.J., M.R., P.A.M., J.-M.N., F.R. and M.V. maintained the geodesy and seismological networks since 2008. P.J., F.R., P.A.M., D.C., H.M. and J.-M.N. carried out field work to collect the data after the earthquake. J.G., L.M. and P.C. contributed with logistic support.

Corresponding author

Correspondence to J.-M. Nocquet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 16584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nocquet, JM., Jarrin, P., Vallée, M. et al. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geosci 10, 145–149 (2017). https://doi.org/10.1038/ngeo2864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing