Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records

Journal name:
Nature Geoscience
Volume:
10,
Pages:
123–128
Year published:
DOI:
doi:10.1038/ngeo2875
Received
Accepted
Published online

Abstract

The eruption of Samalas in Indonesia in 1257 ranks among the largest sulfur-rich eruptions of the Common Era with sulfur deposition in ice cores reaching twice the volume of the Tambora eruption in 1815. Sedimentological analyses of deposits confirm the exceptional size of the event, which had both an eruption magnitude and a volcanic explosivity index of 7. During the Samalas eruption, more than 40km3 of dense magma was expelled and the eruption column is estimated to have reached altitudes of 43km. However, the climatic response to the Samalas event is debated since climate model simulations generally predict a stronger and more prolonged surface air cooling of Northern Hemisphere summers than inferred from tree-ring-based temperature reconstructions. Here, we draw on historical archives, ice-core data and tree-ring records to reconstruct the spatial and temporal climate response to the Samalas eruption. We find that 1258 and 1259 experienced some of the coldest Northern Hemisphere summers of the past millennium. However, cooling across the Northern Hemisphere was spatially heterogeneous. Western Europe, Siberia and Japan experienced strong cooling, coinciding with warmer-than-average conditions over Alaska and northern Canada. We suggest that in North America, volcanic radiative forcing was modulated by a positive phase of the El Niño–Southern Oscillation. Contemporary records attest to severe famines in England and Japan, but these began prior to the eruption. We conclude that the Samalas eruption aggravated existing crises, but did not trigger the famines.

At a glance

Figures

  1. Spatial extent of weather and optical anomalies observed in Europe in 1258.
    Figure 1: Spatial extent of weather and optical anomalies observed in Europe in 1258.

    All sources are listed in Supplementary Table 1.

  2. Grape harvest dates in France (1258-2006).
    Figure 2: Grape harvest dates in France (1258–2006).

    a, Continuous records of days of year (DOY) on which GHDs occurred for Ile-de-France (purple), Alsace (orange) and Burgundy (green) between 1350 and 2006. Data are complemented by newly discovered sources for the years 1258, 1279 and 1294. The green triangle indicates the estimated 1258 GHD in Burgundy (Supplementary Text 3). The most delayed grape harvest of the last 800 years occurred in 1258. See Supplementary Table 1 for a list of all sources. b, GHDs for Ile-de-France, Alsace, and Burgundy are significantly correlated with April–September mean air temperatures of the Paris-Montsouris, Strasbourg and Dijon meteorological stations.

  3. Original contemporary manuscript and illustration describing the dust veil and climate anomalies observed in 1258.
    Figure 3: Original contemporary manuscript and illustration describing the dust veil and climate anomalies observed in 1258.

    a, The text in Latin comes from the Annals of Speyer and says: ‘The same year, wine, wheat and other fruits were greatly altered and this year was also commonly referred to as munkeliar’. The use of the Middle High German expression ‘munkeliar’, rather than its Latin equivalent (annus obscuritatis or annus caliginis), suggests that the exceptional persistence and intensity of insolation dimming was not only omnipresent but unusual enough for commoners to give it a proper name (source: Speyrer Kopialbuch. Generallandesarchiv Karlsruhe, GLA 67, Nr. 448, fol. 39v). b, Contemporary illustration of wine harvesting as illustrated in the Martyrology of the Saint-Germain-des-Prés Abbey (source: National Library of France, Paris, Ms lat. 12834, fol. 69v).

  4. Tree-ring reconstructions of NH extratropical land (40[deg]-90[deg][thinsp]N) summer temperature anomalies since AD 1000.
    Figure 4: Tree-ring reconstructions of NH extratropical land (40°–90°N) summer temperature anomalies since AD 1000.

    a, Summer (JJA) temperature anomalies following the 1257 Samalas eruption in 1258 and 1259 (blue) as compared with cumulative distribution functions for all major volcanic eruptions (that is, 1109, 1453, 1601, 1641, 1695, 1783, 1809, 1816, 1835, 1884 and 1912; black) and for all non-volcanic years (red) since AD 1000. b, The same as in a, but for groups of two consecutive years following major eruptions. c, Spatial extent of the JJA temperature anomalies induced by the Samalas (cooling shown for 1258 and 1259), unknown (1453), Huaynaputina (1601) and Tambora (1816) eruptions. For details see Methods.

References

  1. Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 1674216747 (2013).
  2. Vidal, C. M. et al. Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bull. Volcanol. 77, 73 (2015).
  3. Vidal, C. M. et al. The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the Common Era. Sci. Rep. 6, 34868 (2016).
  4. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543549 (2015).
  5. Stothers, R. B. Climatic and demographic consequences of the massive volcanic eruption of 1258. Climatic Change 45, 361374 (2000).
  6. Zielinski, G. A. Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. J. Geophys. Res. 100, 20937 (1995).
  7. Robock, A. Cooling following large volcanic eruptions corrected for the effect of diffuse radiation on tree rings. Geophys. Res. Lett. 32, L06702 (2005).
  8. Mann, M. E., Fuentes, J. D. & Rutherford, S. Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat. Geosci. 5, 202205 (2012).
  9. Stothers, R. B. Mystery cloud of AD 536. Nature 307, 344345 (1984).
  10. Churakova (Sidorova), O. V. et al. A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings. Glob. Planet. Change 122, 140150 (2014).
  11. Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231236 (2016).
  12. de Silva, S. L. & Zielinski, G. A. Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393, 455458 (1998).
  13. Stothers, R. B. The great Tambora eruption in 1815 and its aftermath. Science 224, 11911198 (1984).
  14. Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 27, 230259 (2003).
  15. Briffa, K. R., Jones, P. D., Schweingruber, F. H. & Osborn, T. J. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393, 450455 (1998).
  16. Stoffel, M. et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 8, 784788 (2015).
  17. Mann, M. E., Rutherford, S., Schurer, A., Tett, S. F. B. & Fuentes, J. D. Discrepancies between the modeled and proxy-reconstructed response to volcanic forcing over the past millennium: implications and possible mechanisms. J. Geophys. Res. 118, 76177627 (2013).
  18. Anchukaitis, K. J. et al. Tree rings and volcanic cooling. Nat. Geosci. 5, 836837 (2012).
  19. D’Arrigo, R., Wilson, R. & Anchukaitis, K. J. Volcanic cooling signal in tree ring temperature records for the past millennium. J. Geophys. Res. 118, 90009010 (2013).
  20. Timmreck, C. et al. Limited temperature response to the very large AD 1258 volcanic eruption. Geophys. Res. Lett. 36, L21708 (2009).
  21. Pfister, C., Schwarz-Zanetti, G., Wegmann, M. & Luterbacher, J. Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300). Holocene 8, 535552 (1998).
  22. Stommel, H. M. & Stommel, E. Volcano Weather: The Story of 1816, the Year Without a Summer (Seven Seas, 1983).
  23. The Year Without a Summer?: World Climate in 1816 (Canadian Museum of Nature, 1992).
  24. Daux, V. et al. An open-database of grape harvest dates for climate research: data description and quality assessment. Clim. Past 8, 14031418 (2012).
  25. Keen, R. A. Volcanic aerosols and lunar eclipses. Science 222, 10111013 (1983).
  26. Farris, W. W. Japan’s Medieval Population: Famine, Fertility, and Warfare in a Transformative Age (Univ. Hawai’i Press, 2006).
  27. Rohde, R., Muller, R. A., Jacobsen, R., Muller, E. & Wickham, C. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics Geostat. Overv. 01, 1000101 (2013).
  28. LaMarche, V. C. & Hirschboeck, K. K. Frost rings in trees as records of major volcanic eruptions. Nature 307, 121126 (1984).
  29. Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R. & Haug, G. H. Volcanoes and ENSO over the past millennium. J. Clim. 21, 31343148 (2008).
  30. Adams, J. B., Mann, M. E. & Ammann, C. M. Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426, 274278 (2003).
  31. Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114118 (2011).
  32. Borisenkov, Y. P. & Pasetskiy, V. M. Extreme Natural Phenomena in Russian Annals of the 9th–17th Centuries (Gidrometeoizdat, 1983).
  33. Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L. & Kaufman, D. S. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res. 114, D15101 (2009).
  34. Pinto, J. P., Turco, R. P. & Toon, O. B. Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94, 11165 (1989).
  35. Lucas, H. S. The great European famine of 1315, 1316, and 1317. Speculum 5, 343377 (1930).
  36. Jordan, W. C. The Great Famine: Northern Europe in the Early Fourteenth Century (Princeton Univ. Press, 1998).
  37. A Bioarchaeological Study of Medieval Burials on the Site of St Mary Spital: Excavations at Spitalfields Market, London E1, 1991–2007 (Museum of London Archaeology, 2012).
  38. Oppenheimer, C. Eruption politics. Nat. Geosci. 8, 244245 (2015).
  39. Espenak, F. & Meeus, J. Five Millennium Catalog of Lunar Eclipses: −1999 to +3000.
  40. Danjon, A. Relation Entre l’Eclairement de la Lune Eclipsée et l’Activité Solaire. L’Astronomie 35, 261265 (1921).
  41. Rousseau, D. Les températures mensuelles en région parisienne de 1676 à 2008. La Météorologie 67, 4355 (2009).
  42. Esper, J. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 22502253 (2002).
  43. Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state of the art. Holocene http://dx.doi.org/10.1177/0959683616652709 (2016).
  44. Melvin, T. & Briffa, K. A ‘signal-free’ approach to dendroclimatic standardisation. Dendrochronologia 26, 7186 (2008).
  45. Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522538 (2010).

Download references

Author information

Affiliations

  1. Dendrolab.ch, Institute of Geological Sciences, University of Berne, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland

    • Sébastien Guillet,
    • Markus Stoffel &
    • Olga V. Churakova (Sidorova)
  2. Geolab, UMR 6042 CNRS, Université Blaise Pascal, 4 rue Ledru, F-63057 Clermont-Ferrand, France

    • Christophe Corona
  3. Climatic Change and Climate Impacts, Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl Vogt, CH-1205 Geneva, Switzerland

    • Markus Stoffel &
    • Martin Beniston
  4. Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, CH-1205 Geneva, Switzerland

    • Markus Stoffel
  5. Laboratoire d’Océanographie et du Climat: Expérimentations et approches numériques, Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France

    • Myriam Khodri
  6. Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, 1 place Aristide Briand, 92195 Meudon, France

    • Franck Lavigne
  7. NCAS-Climate, Department of Meteorology, University of Reading, Reading RG6 6BB, UK

    • Pablo Ortega
  8. Irstea, UR ETNA/Université Grenoble-Alpes, 2 rue de la Papeterie, F-38402 Saint Martin d’Hères, France

    • Nicolas Eckert &
    • Pascal Dkengne Sielenou
  9. Laboratoire des Sciences du Climat et de l’Environnement (CEA-CNRS-UVSQ UMR8212, Institut Pierre Simon Laplace, Université Paris Saclay), L’Orme des Merisiers, F-91191 Gif-sur-Yvette, France

    • Valérie Daux &
    • Valérie Masson-Delmotte
  10. V.N. Sukachev Institute of Forest, 660036 Krasnoyarsk, Akademgorodok, Russian Federation

    • Olga V. Churakova (Sidorova)
  11. Siberian Federal University, RU-660041 Krasnoyarsk, Russia

    • Olga V. Churakova (Sidorova) &
    • Vladimir S. Myglan
  12. Department of Environmental Science, William Paterson University, Wayne, New Jersey 07470, USA

    • Nicole Davi
  13. Lamont Doherty Earth Observatory of Columbia University, University of Arizona, Palisades, New York 10964, USA

    • Nicole Davi
  14. CCJ, UMR 7299 CNRS, Maison méditerranéenne des Sciences de l’homme 5 rue du château de l’horloge, 13094 Aix-en-Provence cedex, France

    • Jean-Louis Edouard
  15. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China

    • Yong Zhang
  16. Center for Excellence & Innovation in Tibetan Plateau Earth System Sciences, Chinese Academy of Sciences, Beijing 100101, China

    • Yong Zhang
  17. Department of Geography, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C2, Canada

    • Brian H. Luckman
  18. Aix-Marseille Université, CNRS, IRD, Collège de France, CEREGE, ECCOREV, F-13545 Aix-en-Provence, France

    • Joël Guiot
  19. Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK

    • Clive Oppenheimer

Contributions

S.G., C.C., M.S. and F.L. designed the research. S.G. investigated historical archives and translated the narrative sources from Latin to English. N.E. and P.D.S. computed return periods from GHD series provided by V.D., S.G. and C.C. produced the NH reconstructions with input from N.E. and J.G. for statistical analyses. O.V.C., N.D., J.-L.E., Y.Z., V.S.M., P.O. and V.M.-D. provided data for the elaboration of the proxy network. S.G., C.C., M.S. and C.O. wrote the paper with input from P.O., V.M.-D., B.H.L., O.V.C. and M.K. All authors discussed the results and commented on the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (29,750 KB)

    Supplementary Information

Excel files

  1. Supplementary Information (5,150 KB)

    Supplementary Information

Additional data