Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silicate Earth’s missing niobium may have been sequestered into asteroidal cores

A Publisher Correction to this article was published on 31 October 2017

This article has been updated

Abstract

Geochemical models describing the behaviour of niobium during Earth’s growth rely on the general paradigm that niobium was delivered by Earth’s asteroidal building blocks at chondritic abundances. This paradigm is based on the observation that niobium is traditionally regarded as a refractory and strongly lithophile element, and thus stored in the silicate portions of Earth and differentiated asteroids. However, Earth’s silicate mantle is instead selectively depleted in niobium, in marked contrast to the silicate mantles of many asteroids and smaller planets that apparently lack any significant depletion in niobium. Here we present results of high-precision measurements for niobium and other lithophile elements in representative meteorites from various small differentiated asteroids. Our data, along with the results of low-pressure experiments, show that in more reduced asteroids—such as Earth’s first building blocks—niobium is moderately chalcophile and more so than its geochemical twin tantalum by an order of magnitude. Accordingly, niobium can be sequestered into the cores of more reduced asteroids during differentiation via the segregation of sulfide melts in a carbon-saturated environment. We suggest that the niobium deficit in Earth’s silicate mantle may be explained by the Earth’s silicate mantle preferentially accreting the silicate portions of reduced asteroidal building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behaviour of Nb compared to Ta, Zr and Hf in different types of iron meteorites and achondrites.
Figure 2: Partitioning of Nb and Ta as a function of fO2 and fS2.
Figure 3: Model calculations illustrating the behaviour of HFSE during core formation on asteroids and on Earth.
Figure 4: Sketch illustrating the proposed behaviour of Nb and Ta during Earth’s accretion from differentiated planetesimals.

Similar content being viewed by others

Change history

  • 31 October 2017

    In the version of this Article originally published, the meteorite group IAB was incorrectly defined in the 'High field strength elements in differentiated meteorites' section. This error has been corrected in the online version of the Article.

References

  1. Palme, H. & O’Neill, H. St. C. The Mantle and Core Vol. 3 Treatise on Geochemistry (ed. Carlson, R. W.) 1–39 (Elsevier, 2014).

    Book  Google Scholar 

  2. Boyet, M. & Carlson, R. W. 142Nd evidence for Early (>4.53 Ga) global differentiation of the silicate earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  3. Campbell, I. H. & O’Neill, H. St. C. Evidence against a chondritic Earth. Nature 483, 553–558 (2012).

    Article  Google Scholar 

  4. Münker, C. et al. Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematics. Science 301, 84–87 (2003).

    Article  Google Scholar 

  5. Rudnick, R. L. et al. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287, 278–281 (2000).

    Article  Google Scholar 

  6. Wade, J. & Wood, B. J. The Earth’s ‘missing’ Nb may be in the core. Nature 409, 75–78 (2001).

    Article  Google Scholar 

  7. Stracke, A. et al. Refractory element fractionation in the Allende meteorite: implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta 85, 114–141 (2012).

    Article  Google Scholar 

  8. Bendel, V. et al. Planetary-scale volatility-controlled fractionation of the rare earth elements in the early Solar System. Eur. Mineral. Conf. 1, EMC2012-635-1 (2012).

    Google Scholar 

  9. Dauphas, N. & Pourmand, A. Thulium anomalies and rare earth element patterns in meteorites and Earth: nebular fractionation and the nugget effect. Geochim. Cosmochim. Acta 163, 234–261 (2015).

    Article  Google Scholar 

  10. Kamber, B. S. & Collerson, K. D. Role of ‘hidden’ deeply subducted slabs in mantle depletion. Chem. Geol. 166, 241–254 (2000).

    Article  Google Scholar 

  11. Cartier, C. et al. Redox control of the fractionation of niobium and tantalum during planetary accretion and core formation. Nat. Geosci. 7, 573–576 (2014).

    Article  Google Scholar 

  12. Rubie, D. C. et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).

    Article  Google Scholar 

  13. Corgne, A., Wood, B. J. & Fei, Y. C- and S-rich molten alloy immiscibility and core formation of planetesimals. Geochim. Cosmochim. Acta 72, 2409–2416 (2008).

    Article  Google Scholar 

  14. Wood, B. J. Carbon in the core. Earth Planet. Sci. Lett. 117, 593–607 (2011).

    Article  Google Scholar 

  15. Dasgupta, R., Buono, A., Whelan, G. & Walker, D. High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 73, 6678–6691 (2009).

    Article  Google Scholar 

  16. Wadhwa, M. in Oxygen in the Solar System Vol. 68 Reviews in Mineralogy and Geochemistry (ed. Rosso, J. J.) 493–510 (Mineralogical Society, 2008).

    Book  Google Scholar 

  17. Kamber, B. S. et al. A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation. Precambr. Res. 126, 289–308 (2003).

    Article  Google Scholar 

  18. Barrat, J. A. et al. The lithophile trace elements in enstatite chondrites. Geochim. Cosmochim. Acta 128, 71–94 (2014).

    Article  Google Scholar 

  19. Barkov, A. Y. et al. Edgarite, FeNb3S6, first natural niobium-rich sulfide from the Khibina alkaline complex, Russian Far North. Contrib. Min. Petrol. 138, 229–236 (2000).

    Article  Google Scholar 

  20. Boujibar, A. et al. Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett. 391, 42–54 (2014).

    Article  Google Scholar 

  21. Grady, M. M. & Wright, I. P. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev. 106, 231–248 (2003).

    Article  Google Scholar 

  22. Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion - and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).

    Article  Google Scholar 

  23. O’Neill, H. St. C. The origin of the Moon and the early history of the Earth – A chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991).

    Article  Google Scholar 

  24. Wade, J., Wood, B. J. & Tuff, J. Metal–silicate partitioning of Mo and W at high pressures and temperatures: evidence for late accretion of sulphur to the Earth. Geochim. Cosmochim. Acta 85, 58–74 (2012).

    Article  Google Scholar 

  25. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    Article  Google Scholar 

  26. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004).

    Article  Google Scholar 

  27. Albarède, F. et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013).

    Article  Google Scholar 

  28. Allègre, C. J., Manhès, G. & Göpel, C. The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett 267, 386–398 (2008).

    Article  Google Scholar 

  29. König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).

    Article  Google Scholar 

  30. Rudge, J. F., Kleine, T. & Bourdon, B. Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010).

    Article  Google Scholar 

  31. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. Non-chondritic meteorites from asteroidal bodies. Rev. Mineral. Geochem. 36, 4-1–4-195 (1998).

    Google Scholar 

  32. Mittlefehldt, D. W. in Meteorites and Cosmochermical Processes Vol. 1 Treatise on Geochemistry (ed. Carlson, R. W.) 235–265 (Elsevier, 2014).

    Book  Google Scholar 

  33. Benedix, G. K., Haack, H. & McCoy, T. J. in Meteorites and Cosmochermical Processes Vol. 1 Treatise on Geochemistry (ed. Carlson, R. W.) 267–285 (Elsevier, 2014).

    Book  Google Scholar 

  34. Hunt, A. C. et al. A geochemical study of the winonaites: evidence for limited partial melting and constraints on the precursor composition. Geochim. Cosmochim. Acta 199, 13–30 (2017).

    Article  Google Scholar 

  35. Benedix, G. K., Lauretta, D. S. & McCoy, T. J. Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons. Geochim. Cosmochim. Acta 69, 5123–5131 (2005).

    Article  Google Scholar 

  36. Schulz, T., Münker, C., Palme, H. & Mezger, K. Hf-W chronometry of the IAB iron meteorite parent body. Earth Planet. Sci. Lett. 180, 185–193 (2009).

    Article  Google Scholar 

  37. Schulz, T., Münker, C., Palme, H. & Mezger, K. Hf–W chronometry of primitive achondrites. Geochim. Cosmochim. Acta 74, 1706–1718 (2010).

    Article  Google Scholar 

  38. Münker, C., Weyer, S., Scherer, E. & Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, GC000183 (2001).

    Article  Google Scholar 

  39. Weyer, S., Münker, C., Rehkämper, M. & Mezger, K. Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chem. Geol. 187, 295–313 (2002).

    Article  Google Scholar 

  40. Kleine, T., Mezger, K., Münker, C., Palme, H. & Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and Martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004).

    Article  Google Scholar 

  41. Hoffmann, J. E. et al. Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochim. Cosmochim. Acta 74, 7236–7260 (2010).

    Article  Google Scholar 

  42. Kirchenbaur, M. & Münker, C. The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo) during the petrogenesis of mafic K-rich lavas: the Eastern Mediterranean case. Geochim. Cosmochim. Acta 165, 178–199 (2015).

    Article  Google Scholar 

  43. Schuth, S. et al. Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contrib. Mineral. Petrol. 148, 288–304 (2004).

    Article  Google Scholar 

  44. Shunk, F. Constitution of Binary Alloys, 2nd Supplement. Materials Science and Engineering Series 720 (McGraw-Hill Book, 1969).

    Google Scholar 

  45. Dasgupta, R. & Walker, D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle. Geochim. Cosmochim. Acta 72, 4627–4641 (2009).

    Article  Google Scholar 

  46. Wheeler, K., Walker, D. & McDonough, W. Pd and Ag metal–silicate partitioning applied to Earth differentiation and core-mantle exchange. Meteorit. Planet. Sci. 46, 199–217 (2011).

    Article  Google Scholar 

  47. Lagos, M. et al. The Earth’s missing lead may not be in the core. Nature 456, 89–92 (2008).

    Article  Google Scholar 

  48. Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  49. O’Neill, H. St. C. & Eggins, S. M. The effect of melt composition on trace element partitioning: an experimental investigation on the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 . Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  50. Ågren, J. A thermodynamic analysis of the Fe–C and Fe–N phase diagrams. Metall. Mater. Trans. A 10, 1847–1852 (1979).

    Article  Google Scholar 

  51. Kawanishi, S., Yoshikawa, T. & Tanaka, T. Equilibrium Phase Relationship between SiC and a Liquid Phase in the Fe–Si–C System at 1523–1723 K. Mater. Trans. 50, 806–813 (2009).

    Article  Google Scholar 

  52. Hillert, M. & Staffansson, L. I. An analysis of the phase equilibria in the Fe–FeS system. Metall. Mater. Trans. B 6, 37–41 (1975).

    Article  Google Scholar 

  53. Sharma, R. C. & Chang, Y. A. Thermodynamics and phase relationships of transition metal–sulfur systems: Part III. Thermodynamic properties of the Fe–S liquid phase and the calculation of the Fe–S phase diagram. Mater. Trans. B 10, 103–108 (1979).

    Article  Google Scholar 

  54. Chuang, Y. Y., Hsieh, K. C. & Chang, Y. A. Thermodynamics and phase relationships of transition metal–sulfur systems: Part V. A reevaluation of the Fe-S system using an associated solution model for the liquid phase. Metall. Mater. Trans. B 16, 277–285 (1985).

    Article  Google Scholar 

  55. Walder, P. & Pelton, A. D. Thermodynamic modeling of the Fe–S system. J. Phase. Equilib. Diff. 26, 23–38 (2005).

    Article  Google Scholar 

  56. Guillermet, A. F., Hillert, M., Jansson, B. & Sundman, B. An assessment of the Fe–S system using a two-sublattice model for the liquid phase. Metall. Mater. Trans. B 12, 745–754 (1981).

    Article  Google Scholar 

  57. O’Neill, H. St. C. & Mavrogenes, J. A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002).

    Article  Google Scholar 

  58. Wood, B. J. & Kiseeva, E. S. Trace element partitioning into sulfide: how lithophile elements become chalcophile and vice versa. Am. Mineral. 100, 2371–2379 (2015).

    Article  Google Scholar 

  59. Wohlers, A. & Wood, B. J. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature 520, 337–341 (2015).

    Article  Google Scholar 

  60. Namur, O., Charlier, B., Holtz, F., Cartier, C. & McCammon, C. Sulfur solubility in reduced mafic silicate melts: implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448, 102–114 (2016).

    Article  Google Scholar 

  61. Kiseeva, E. S. & Wood, B. J. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth Planet. Sci. Lett. 424, 280–294 (2015).

    Article  Google Scholar 

  62. Hart, S. R. & Gaetani, G. A. Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X. Geochim. Cosmochim. Acta 185, 9–20 (2016).

    Article  Google Scholar 

  63. Burnham, A. D., Berry, A. J., Wood, B. J. & Cibin, G. The oxidation states of niobium and tantalum in mantle melts. Chem. Geol. 330–331, 228–232 (2012).

    Article  Google Scholar 

  64. Cartier, C. et al. Evidence of Nb2+ and Ta3+ in silicate melts under highly reducing conditions: a XANES study. Am. Mineral. 100, 2152–2158 (2015).

    Article  Google Scholar 

  65. Jacobsen, S. B. & Harper, C. L. Jr. in Earth Processes: Reading the Isotopic Code 95 (eds Basu, A. & RHart, S. R.) 47–74 (American Geophysical Union Monograph, 1996).

    Google Scholar 

  66. Kleine, T., Mezger, K., Palme, H. & Münker, C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate funding by DFG grant Mu 1406/6 and ERC grant 669666 ‘Infant Earth’. K. Mezger is thanked for access to the MC-ICPMS facility at ZLG Münster from 2004 to 2008. G. Mallman is thanked for help during LA-ICPMS measurements at ANU Canberra. We thank R. Schumacher, Mineralogical Museum Bonn, Germany, A. Bischoff, Universität Münster, and J. Zipfel, Senckenberg Museum Frankfurt, Germany, for providing meteorite samples.

Author information

Authors and Affiliations

Authors

Contributions

C.M. performed most of the analytical work and manuscript writing. R.O.C.F. performed all experimental work and contributed to manuscript writing. T.S. performed part of the analytical work.

Corresponding author

Correspondence to Carsten Münker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 416 kb)

Supplementary Information

Supplementary Information (XLS 86 kb)

Supplementary Information

Supplementary Information (XLS 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münker, C., Fonseca, R. & Schulz, T. Silicate Earth’s missing niobium may have been sequestered into asteroidal cores. Nature Geosci 10, 822–826 (2017). https://doi.org/10.1038/ngeo3048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing