Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decrease in oceanic crustal thickness since the breakup of Pangaea

Abstract

Earth’s mantle has cooled by 6–11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15–20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global map of seismic data and ages of ocean crust8.
Figure 2: Correlation between oceanic crustal thickness and plate age.
Figure 3: Plate reconstructions of the central Atlantic basin at 170 Ma and 110 Ma.

References

  1. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  2. Condie, K. C., Aster, R. C. & van Hunen, J. A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites. Geosci. Front. 7, 543–553 (2016).

    Article  Google Scholar 

  3. Gurnis, M. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–699 (1988).

    Article  Google Scholar 

  4. Whittaker, J. M., Müller, R. D., Roest, W. R., Wessel, P. & Smith, W. H. F. How supercontinents and superoceans affect seafloor roughness. Nature 456, 938–941 (2008).

    Article  Google Scholar 

  5. Lenardic, A., Moresi, L.-N., Jellinek, A. M. & Manga, M. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett. 234, 317–333 (2005).

    Article  Google Scholar 

  6. Klein, E. M. & Langmuir, C. H. Global correlations of oceanic ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  Google Scholar 

  7. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  Google Scholar 

  8. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  9. Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).

    Article  Google Scholar 

  10. White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J. Petrol. 42, 1171–1196 (2001).

    Article  Google Scholar 

  11. McClain, J. S. & Atallah, C. A. Thickening of the oceanic crust with age. Geology 14, 574–576 (1986).

    Article  Google Scholar 

  12. Davis, J. K., Lawver, L. A., Norton, I. O. & Gahagan, L. M. New Somali Basin magnetic anomalies and a plate model for the early Indian Ocean. Gondwana Res. 34, 16–28 (2016).

    Article  Google Scholar 

  13. Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M. & Stixrude, L. Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot provinces. Geochem. Geophys. Geosyst. 14, 604–619 (2013).

    Article  Google Scholar 

  14. Eldholm, O. & Coffin, M. F. in The History and Dynamics of Global Plate Motions (eds Richards, M. A., Gordon, R. G. & Van Der Hilst, R. D.) 309–326 (Geophysical Monograph Series Vol. 121, American Geophysical Union, 2000).

    Book  Google Scholar 

  15. Chen, Y. J. Oceanic crustal thickness versus spreading rate. Geophys. Res. Lett. 19, 753–756 (1992).

    Article  Google Scholar 

  16. Humler, E., Langmuir, C. & Daux, V. Depth versus age: new perspectives from the chemical compositions of ancient crust. Earth Planet. Sci. Lett. 173, 7–23 (1999).

    Article  Google Scholar 

  17. Fisk, M. & Kelley, K. A. Probing the Pacific’s oldest MORB glass: mantle chemistry and melting conditions during the birth of the Pacific Plate. Earth Planet. Sci. Lett. 202, 741–752 (2002).

    Article  Google Scholar 

  18. Gale, A., Langmuir, C. H. & Dalton, C. A. The global systematics of ocean ridge basalts and their origin. J. Petrol. 55, 1051–1082 (2014).

    Article  Google Scholar 

  19. Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977).

    Article  Google Scholar 

  20. Hillier, J. K. Subsidence of ‘normal’ seafloor: observations do indicate ‘flattening’. J. Geophys. Res. Solid Earth 115, B03102 (2010).

    Article  Google Scholar 

  21. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article  Google Scholar 

  22. Brandl, P. A., Regelous, M., Beier, C. & Haase, K. M. High mantle temperatures following rifting caused by continental insulation. Nat. Geosci. 6, 391–394 (2013).

    Article  Google Scholar 

  23. Minshull, T. A. On the roughness of Mesozoic oceanic crust in the western North Atlantic. Geophys. J. Int. 136, 286–290 (1999).

    Article  Google Scholar 

  24. Minshull, T. A. et al. Crustal structure at the Blake Spur Fracture Zone from expanding spread profiles. J. Geophys. Res. 96, 9955–9984 (1991).

    Article  Google Scholar 

  25. Niu, Y. & O’Hara, M. J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J. Petrol. 49, 633–664 (2008).

    Article  Google Scholar 

  26. Wilson, M. Thermal evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume. J. Geol. Soc. Lond. 154, 491–495 (1997).

    Article  Google Scholar 

  27. McHone, J. G. Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophysics 316, 287–296 (2000).

    Article  Google Scholar 

  28. Janney, P. E. & Castillo, P. R. Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean. Earth Planet. Sci. Lett. 192, 291–302 (2001).

    Article  Google Scholar 

  29. Humler, E. & Besse, J. A correlation between mid-ocean-ridge basalt chemistry and distance to continents. Nature 19, 607–609 (2002).

    Article  Google Scholar 

  30. Holbrook, W. S. & Kelemen, P. B. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature 364, 433–436 (1993).

    Article  Google Scholar 

  31. Officer, C. B., Ewing, J. I., Hennion, J. F., Harkrider, D. G. & Miller, D. E. Geophysical investigations in the eastern Caribbean: summary of 1955 and 1956 cruises. Phys. Chem. Earth 3, 17–109 (1959).

    Article  Google Scholar 

  32. Wolfe, C. J., Purdy, G. M., Toomey, D. R. & Solomon, S. C. Microearthquake characteristics and crustal velocity structure at 29° N on the Mid-Atlantic Ridge: the architecture of a slow spreading segment. J. Geophys. Res. 100, 24449–24472 (1995).

    Article  Google Scholar 

  33. Smallwood, J. R. & White, R. S. Crustal accretion at the Reykjanes Ridge, 61°–62° N. J. Geophys. Res. 103, 5185–5201 (1998).

    Article  Google Scholar 

  34. Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos spreading center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

    Article  Google Scholar 

  35. Larson, R. L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19, 547–550 (1991).

    Article  Google Scholar 

  36. Boyden, J. A. et al. in Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C.) 95–114 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  37. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  38. Sleep, N. H. Lateral flow of hot plume material ponded at sublithospheric depths. J. Geophys. Res. 101, 28065–28083 (1996).

    Article  Google Scholar 

  39. Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M. & Stixrude, L. Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot provinces. Geochem. Geophys. Geosyst. 14, 604–619 (2013).

    Article  Google Scholar 

  40. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in Fortran: The Art of Scientific Computing 2nd edn, 662–664 (Cambridge Univ. Press, 1992).

    Google Scholar 

Download references

Acknowledgements

H.J.A.V.A. and J.L.H. received funding for this research from the National Science Foundation (grant OCE-1348454). J.K.D. and L.A.L. were supported by the PLATES project at the Institute for Geophysics. We thank L. Lavier for discussions of this work. This is UTIG contribution 3013.

Author information

Authors and Affiliations

Authors

Contributions

H.J.A.V.A. and J.L.H. compiled the marine seismic refraction data from the science literature. J.K.D. and L.A.L. carried out plate-tectonic reconstructions. H.J.A.V.A. wrote the paper with contributions and edits from all other authors.

Corresponding author

Correspondence to Harm J. A. Van Avendonk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1028 kb)

Supplementary Information

Supplementary Information (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Avendonk, H., Davis, J., Harding, J. et al. Decrease in oceanic crustal thickness since the breakup of Pangaea. Nature Geosci 10, 58–61 (2017). https://doi.org/10.1038/ngeo2849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing