Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of supercontinents linked to increases in atmospheric oxygen

Abstract

Atmospheric oxygen concentrations in the Earth’s atmosphere rose from negligible levels in the Archaean Era to about 21% in the present day. This increase is thought to have occurred in six steps, 2.65, 2.45, 1.8, 0.6, 0.3 and 0.04 billion years ago, with a possible seventh event identified at 1.2 billion years ago. Here we show that the timing of these steps correlates with the amalgamation of Earth’s land masses into supercontinents. We suggest that the continent–continent collisions required to form supercontinents produced supermountains. In our scenario, these supermountains eroded quickly and released large amounts of nutrients such as iron and phosphorus into the oceans, leading to an explosion of algae and cyanobacteria, and thus a marked increase in photosynthesis, and the photosynthetic production of O2. Enhanced sedimentation during these periods promoted the burial of a high fraction of organic carbon and pyrite, thus preventing their reaction with free oxygen, and leading to sustained increases in atmospheric oxygen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supercontinent ages compared with variations in atmospheric O2 and related variables.
Figure 2: Sketch of the O2 cycle showing the principal sources and sinks.

Similar content being viewed by others

References

  1. Des Marais, D. J., Strauss, H., Summons, R. E., Hayes, J. M. & Carbon, isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

    Article  Google Scholar 

  2. Bjerrum, C. J. & Canfield, D. E. New insights into the burial history of organic carbon on the early Earth. Geochem. Geophys. Geosys. 5, 2004Gc000713 (2004).

  3. Wille, M. et al. Evidence for a gradual rise in oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

    Article  Google Scholar 

  4. Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  5. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: A critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  Google Scholar 

  6. Cloud, P. E. Oxygen in the Precambrian atmosphere: An evolution of the geological evidence. Science 160, 729–736 (1968).

    Article  Google Scholar 

  7. Cameron, E. M. Sulphate and sulphide reduction in early Precambrian oceans. Nature 296, 145–148 (1982).

    Article  Google Scholar 

  8. Canfield, D. F., Habicht, K. S. & Thamdrup, B. The Archean sulphur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).

    Article  Google Scholar 

  9. Farquar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    Article  Google Scholar 

  10. Cloud, P. E. Jr. A working model for the primitive Earth. Am. J. Sci. 272, 537–548 (1972).

    Article  Google Scholar 

  11. Alibert, C. & McCulloch, M. T. Rare earth and neodymium composition of the banded iron formations and associated shales from Hamersley, Western Australia. Geochim. Cosmochim. Acta 47, 187–204 (1993).

    Article  Google Scholar 

  12. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004).

    Article  Google Scholar 

  13. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006).

    Article  Google Scholar 

  14. Hurtgen, M. T., Arthur, M. A. & Halverson, G. P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary sulfide. Geology 33, 41–44 (2005).

    Article  Google Scholar 

  15. Halverson, G. P. & Hurtgen, M. T. Ediacaran growth of the marine sulfate reservoir. Earth Planet. Sci. Lett. 263, 32–44 (2007).

    Article  Google Scholar 

  16. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–94 (2007).

    Article  Google Scholar 

  17. Scott, C. et al. Tracing the stepwise oxidation of the Proterozoic ocean. Nature 452, 456–459 (2008).

    Article  Google Scholar 

  18. Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  19. Derry, L. A. & France-Lanord, C. Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography 11, 267–275 (1996).

    Article  Google Scholar 

  20. Godderis, Y. & Francois, L. M. Balancing the Cenozoic carbon and alkalinity cycles: Constraints from isotopic record. Geophys. Res. Let. 23, 3743–3746 (1996).

    Article  Google Scholar 

  21. Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the upside-down Archaean mantle. Geochem. Geophys. Geosyst. 2, 2000GC000114 (2001).

  22. Barley, M. E., Pichard, A. L. & Sylvester, P. J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385, 55–58 (1997).

    Article  Google Scholar 

  23. Delano, J. W. Redox history of the Earth’s interior since 3900 Ma: Implications for prebiotic molecules. Orig. Life Evol. B31, 311–341 (2001).

    Article  Google Scholar 

  24. Canil, D. Vanadium partitioning and the redox state of Archaean komatiitic magmas. Nature 389, 842–845 (1997).

    Article  Google Scholar 

  25. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotopes from upper Proterozoic successions of Svalbard and east Greenland. Nature 321, 832–838 (1986).

    Article  Google Scholar 

  26. Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  27. Godderis, Y. & Veizer, J. Tectonic control of chemical and isotopic composition of ancient oceans: The impact of continental growth. Am. J. Sci. 300, 434–461 (2000).

    Article  Google Scholar 

  28. McLennan, S. M. & Taylor, R. S. Geochemical constraints on the growth of the continental crust. J. Geol. 90, 347–361 (1982).

    Google Scholar 

  29. Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–279 (2008).

    Article  Google Scholar 

  30. Derry, L. A., Kaufman, A. J. & Jacobsen, S. B. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochem. Cosmochim. Acta 56, 1317–1329 (1992).

    Article  Google Scholar 

  31. Lindsay, J. F. & Brasier, M. D. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambr. Res. 114, 1–34 (2002).

    Article  Google Scholar 

  32. Squire, R. J., Campbell, I. H., Allen, C. M. & Wilson, C. J. L. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth?. Earth Planet. Sci. Lett. 250, 116–134 (2006).

    Article  Google Scholar 

  33. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  34. Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H. & Palhol, F. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosion system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  35. France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997).

    Article  Google Scholar 

  36. Campbell, I. H. & Jarvis, G. T. Mantle convection and early crustal evolution. Precambr. Res. 26, 15–56 (1984).

    Article  Google Scholar 

  37. Bleeker, W. The late Archaean record: A puzzle in ca. 35 pieces. Lithos 71, 99–134 (2003).

    Article  Google Scholar 

  38. Lowe, D. R. Archean sedimentation. Annu. Rev. Earth Planet. Sci. 8, 145–167 (1980).

    Article  Google Scholar 

  39. Cook, P. J. & Shergold, J. H. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. Nature 308, 231–236 (1984).

    Article  Google Scholar 

  40. Trendall, A. F. & Blockley, J. G. The significance of iron-formation in the Precambrian stratigraphic record. Int. Assoc. Sedimentol. Spec. Publ. 44, 33–66 (2002).

    Google Scholar 

  41. Morey, G. B. & Southwick, D. L. Allostratigraphic relationship in Early Proterozoic iron-formations in the Lake Superior region. Econ. Geol. 90, 1983–1993 (1995).

    Article  Google Scholar 

  42. Shields, G. A. & Veizer, J. Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000266 (2002).

  43. Bergman, N. M., Lenton, T. M. & Watson, A. J. Copse: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  44. Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. Towards a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 117, 1181–1207 (2005).

    Article  Google Scholar 

  45. Brasier, M. D. & Lindsay, J. F. A billion years of environmental stability and the emergence of eukaryotes: New data from Northern Australia. Geology 26, 555–558 (1998).

    Article  Google Scholar 

  46. Pell, S. D., Williams, I. S. & Chivas, A. R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian sand dunes. Sedim. Geol. 109, 233–260 (1997).

    Article  Google Scholar 

  47. Goodge, J. W., Williams, I. S. & Myrow, P. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record or the rift-, passive-, and active-margin sedimentation. Geol. Soc. Am. Bull. 116, 1253–1279 (2004).

    Article  Google Scholar 

  48. Flowerdew, M. J. et al. Combined U–Pb geochronology and Hf isotopes geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol. Soc. Am. Bull. 119, 275–288 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Brocks, J. Chappell, K. Eriksson, A. Trendall and M. Wille for their comments.

Author information

Authors and Affiliations

Authors

Contributions

C.M.A. carried out most of the analyses and compiled the data. I.H.C. initiated the study and wrote the paper. Both authors discussed the results and interpretation.

Corresponding author

Correspondence to Ian H. Campbell.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, I., Allen, C. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosci 1, 554–558 (2008). https://doi.org/10.1038/ngeo259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing