Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-subduction of the Pangaean global plate

Abstract

One of the most striking and rare occurrences in the Earth’s history is the amalgamation of most of the continental lithosphere into one supercontinent. The most recent supercontinent, Pangaea, lasted from 320 to 200 million years ago. Here, we show that after the continental collisions that led to the formation of Pangaea, plate convergence continued in a large, wedge-shaped oceanic tract. We suggest that plate strain at the periphery of the supercontinent eventually resulted in self-subduction of the Pangaean global plate, when the ocean margin of the continent subducted beneath the continental edge at the other end of the same plate. Our scenario results in a stress regime within Pangaea that explains the development of a large fold structure near the apex of the Palaeotethys Ocean, extensive lower crustal heating and continental magmatism at the core of the continent as well as the development of radially arranged continental rifts in more peripheral regions of the plate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pangaea configurations during the late Palaeozoic era.
Figure 2: Conceptual model showing lithospheric buckling around a vertical axis.
Figure 3: Self-subduction model and geological effects in Pangaea.

Similar content being viewed by others

References

  1. Murphy, J. B. & Nance, R. D. Do supercontinents introvert or extrovert?: Sm–Nd isotope evidence. Geology 31, 873–876 (2003).

    Article  Google Scholar 

  2. Malavieille, J., Guihot, P., Costa, S., Lardeaux, J.-M. & Gardien, V. Collapse of a thickened crust in the French Massif Central: Mont Pilat extensional shear zone and Saint-Ettienne Upper Carboniferous basin. Tectonophysics 177, 139–149 (1990).

    Article  Google Scholar 

  3. Catalan, J. R. M., Arenas, R. & Balda, M. A. D. Large extensional structures developed during emplacement of a crystalline thrust sheet: The Mondonedo nappe (NW Spain). J. Struct. Geol. 25, 1815–1839 (2003).

    Article  Google Scholar 

  4. Henk, A. Gravitational orogenic collapse versus plate boundary stresses: A numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geologische Rundschau 86, 39–55 (1997).

    Article  Google Scholar 

  5. Ernst, R. E. & Buchan, K. in Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 297–333 (American Geophysical Union, Washington, 1997).

    Google Scholar 

  6. Doblas, M. et al. Permo-Carboniferous volcanism in Europe and northwest Africa: A superplume exhaust valve in the centre of Pangaea? J. Afr. Earth Sci. 26, 89–99 (1998).

    Article  Google Scholar 

  7. Veevers, J. J. Edge tectonics (Trench rollback, terrane export) of Gondwanaland-Pangea synchronized by supercontinental heat. Gondw. Res. 8, 449–456 (2005).

    Article  Google Scholar 

  8. Hynes, A. 2-Stage rifting of Pangea by 2 different mechanisms. Geology 18, 323–326 (1990).

    Article  Google Scholar 

  9. Stampfli, G. M. & Borel, G. D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).

    Article  Google Scholar 

  10. Stampfli, G. M. & Borel, G. D. in The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W. et al.) 53–80 (Springer, Berlin, 2004).

    Book  Google Scholar 

  11. Gray, D. R., Gregory, R. T., Armstrong, R. A., Richards, I. J. & Miller, J. M. Age and stratigraphic relationships of structurally deepest level rocks, Oman mountains: U/Pb SHRIMP evidence for Late Carboniferous Neotethys rifting. J. Geol. 113, 611–626 (2005).

    Article  Google Scholar 

  12. Breitkreuz, C. & Kennedy, A. Magmatic flare-up at the Carboniferous/Permian boundary in the NE German basin revealed by SHRIMP zircon ages. Tectonophysics 302, 307–326 (1999).

    Article  Google Scholar 

  13. Weil, A. B., van der Voo, R. & van der Pluijm, B. A. Oroclinal bending and evidence against the Pangea megashear: The Cantabria-Asturias arc (northern Spain). Geology 29, 991–994 (2001).

    Article  Google Scholar 

  14. Cawood, P. A. & Buchan, C. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci. Rev. 82, 217–256 (2007).

    Article  Google Scholar 

  15. Heeremans, M., Larsen, B. T. & Stel, H. Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway. New constraints on the mode of rifting. Tectonophysics 266, 55–79 (1996).

    Article  Google Scholar 

  16. Garcia-Navarro, E. & Fernandez, C. Final stages of the Variscan orogeny at the southern Iberian massif: Lateral extrusion and rotation of continental blocks. Tectonics 23 (2004).

  17. Whitaker, A. E. & Engelder, T. Plate-scale stress fields driving the tectonic evolution of the central Ouachita salient, Oklahoma and Arkansas. Geol. Soc. Am. Bull. 118, 710–723 (2006).

    Article  Google Scholar 

  18. Stampfli, G. M. in Tectonics and Magmatism in Turkey and the Surrounding Areas (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.) 1–23 (Geological Society, London, 2000).

    Google Scholar 

  19. Langhi, L. & Borel, G. D. Influence of the Neotethys rifting on the development of the Dampier Sub-basin (North West Shelf of Australia), highlighted by subsidence modelling. Tectonophysics 397, 93–111 (2005).

    Article  Google Scholar 

  20. Robertson, A. H. F. et al. Testing models of Late Palaeozoic Early Mesozoic orogeny in Western Turkey: Support for an evolving open-Tethys model. J. Geol. Soc. 161, 501–511 (2004).

    Article  Google Scholar 

  21. Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale 2004 (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  22. Scotese, C. R. Atlas of Earth History, Volume 1, Paleogeography. (PALEOMAP Project, Arlington, Texas, 2001).

  23. Marcano, M. C., Van der Voo, R. & Mac Niocaill, C. True polar wander during the Permo-Triassic. J. Geodyn. 28, 75–95 (1999).

    Article  Google Scholar 

  24. Scotese, C. R. in Predictive Stratigraphic Analysis; Concept and Application (eds Cecil, C., Blaine, E. & Terence, N.) 3–6 (Geological Survey, Reston, VA, 1994).

    Google Scholar 

  25. De Bono, A. Stratigraphy and Geodynamic Evolution. PhD thesis, Université de Lausanne (1998).

  26. Dostal, J., Vozar, J., Keppie, J. D. & Hovorka, D. Permian volcanism in the Central Western Carpathians (Slovakia): Basin-and-range type rifting in the southern Laurussian margin. Int. J. Earth Sci. 92, 27–35 (2003).

    Google Scholar 

  27. Ziegler, P. A. in The Encyclopedia of Geology (eds Selley, R. C., Cocks, L. R. & Plimer, I. R.) 102–125 (Elsevier, Amsterdam, 2004).

    Google Scholar 

  28. Zeh, A. & Bratz, H. Permo-Carboniferous Magmatism and Rifting in Europe 319–334 (2004).

    Google Scholar 

  29. Anthes, G. & Reischmann, T. Timing of granitoid magmatism in the eastern mid-German crystalline rise. J. Geodyn. 31, 119–143 (2001).

    Article  Google Scholar 

  30. Fernandez-Suarez, J., Dunning, G. R., Jenner, G. A. & Gutierrez-Alonso, G. Variscan collisional magmatism and deformation in NW Iberia: Constraints from U–Pb geochronology of granitoids. J. Geol. Soc. 157, 565–576 (2000).

    Article  Google Scholar 

  31. Lago, M., Gil, A., Arranz, E., Gale, C. & Pocovi, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 83–103 (2005).

    Article  Google Scholar 

  32. Schaltegger, U. Magma pulses in the Central Variscan Belt: Episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9, 242–245 (1997).

    Article  Google Scholar 

  33. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Long term stability in deep mantle structure: Evidence from the similar to 300 Myr Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet. Sci. Lett. 267, 444–452 (2008).

    Article  Google Scholar 

  34. Kirstein, L. A., Davies, G. R. & Heeremans, M. The petrogenesis of Carboniferous-Permian dyke and sill intrusions across northern Europe. Contrib. Mineral. Petrol. 152, 721–742 (2006).

    Article  Google Scholar 

  35. Corfu, F. & Dahgren, S. Perovskite U–Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Penno-Carboniferous Oslo Rift. Earth Planet. Sci. Lett. 265, 256–269 (2008).

    Article  Google Scholar 

  36. Pascal, C., Cloetingh, S. & Davies, G. R. Permo-Carboniferous Magmatism and Rifting in Europe 139–156 (2004).

    Google Scholar 

  37. Condie, K. Mantle Plumes and their Record in Earth History (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  38. Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 43, 83–143 (2005).

    Article  Google Scholar 

  39. Veevers, J. J. in Billion-Year History of Australia and Neighbours in Gondwanaland (ed. Veevers, J. J.) 2–8 (GEMOC Press, Sidney, 2000).

    Google Scholar 

  40. Gutiérrez-Alonso, G., Fernández-Suárez, J. & Weil, A. B. in Paleomagnetic and Structural Analysis of Orogenic Curvature 383 (eds Weil, A. B. & Sussman, A.) 121–131 (Geological Society of America, Boulder, 2004).

    Google Scholar 

  41. Femenias, O. et al. A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic–ultramafic layered xenoliths from Beaunit (French Massif Central). Chem. Geol. 199, 293–315 (2003).

    Article  Google Scholar 

  42. Fernandez-Suarez, J., Arenas, R., Jeffries, T. E., Whitehouse, M. J. & Villaseca, C. A U–Pb study of zircons from a lower crustal granulite xenolith of the Spanish central system: A record of Iberian lithospheric evolution from the Neoproterozoic to the Triassic. J. Geol. 114, 471–483 (2006).

    Article  Google Scholar 

  43. Arthaud, F. & Matte, P. Late paleozoic strike-slip faulting in southern Europe and northern Africa—result of a right-lateral shear zone between Appalachians and Urals. Geol. Soc. Am. Bull. 88, 1305–1320 (1977).

    Article  Google Scholar 

  44. Timmerman, M. J. Permo-Carboniferous Magmatism and Rifting in Europe 41–72 (2004).

    Google Scholar 

  45. Simancas, J. F. et al. The tectonic frame of the Variscan-Alleghanian orogen in southern Europe and northern Africa. Tectonophysics 398, 181–198 (2005).

    Article  Google Scholar 

  46. Vauchez, A. & Tommasi, A. in Intraplate Strike-Slip Deformation Belts Vol. 210 (eds Storti, F., Hodsworth, R. E. & Salvini, F.) 15–34 (Geological Society, London, 2003).

    Google Scholar 

  47. Coward, M. P. in Permian and Triassic Rifting in Northwest Europe Vol. 91 (ed. Boldy, S. A. R.) 7–39 (Geological Society, London, 1995).

    Google Scholar 

  48. Olaussen, S., Larsen, B. T. & Steel, R. in The Upper Carboniferous-Permian Oslo Rift; Basin Fill in Relation to Tectonic Development Vol. 17 (eds Embry, A. F., Beauchamp, B. & Glass, D. J.) 175–197 (Canadian Society of Petroleum Geology Memoir, Canada, 1994).

    Google Scholar 

  49. Ebbing, J., Afework, Y., Olesen, O. & Nordgulen, O. Is there evidence for magmatic underplating beneath the Oslo Rift? Terra Nova 17, 129–134 (2005).

    Article  Google Scholar 

  50. Mosar, J. Scandinavia’s North Atlantic passive margin. J. Geophys. Res.-Solid Earth 108 (B8) (2003).

Download references

Acknowledgements

G.G.-A. has been funded by the Spanish Education and Science Ministry Project CGL2006-00902 O.D.R.E. (Oroclines and Delamination: Relations and Effects) and the Mobility Program Grant PR2007-0475; J.B.M. and S.T.J. acknowledge NSERC (Canada) support. This article is a contribution to IGCP 497.

Author information

Authors and Affiliations

Authors

Contributions

The primary idea for this paper was coined by G.G.-A and the paper herein is the result of several years of intense research and discussion among all of the authors in an effort to piece together a unifying hypothesis accounting for many observations, geological facts and a variety of data from different areas of the world. All of the authors have contributed equally to the manuscript.

Corresponding author

Correspondence to Gabriel Gutiérrez-Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Alonso, G., Fernández-Suárez, J., Weil, A. et al. Self-subduction of the Pangaean global plate. Nature Geosci 1, 549–553 (2008). https://doi.org/10.1038/ngeo250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing