Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records

Abstract

Feedbacks controlling long-term fluxes in the carbon cycle and in particular atmospheric carbon dioxide are critical in stabilizing the Earth’s long-term climate. It has been hypothesized that atmospheric CO2 concentrations over millions of years are controlled by a CO2-driven weathering feedback that maintains a mass balance between the CO2 input to the atmosphere from volcanism, metamorphism and net organic matter oxidation, and its removal by silicate rock weathering and subsequent carbonate mineral burial1,2,3,4. However, this hypothesis is frequently challenged by alternative suggestions, many involving continental uplift and either avoiding the need for a mass balance or invoking fortuitously balanced fluxes in the organic carbon cycle5,6,7,8,9. Here, we present observational evidence for a close mass balance of carbon cycle fluxes during the late Pleistocene epoch. Using atmospheric CO2 concentrations from ice cores10,11,12, we show that the mean long-term trend of atmospheric CO2 levels is no more than 22 p.p.m.v. over the past 610,000 years. When these data are used in combination with indicators of ocean carbonate mineral saturation to force carbon cycle models, the maximum imbalance between the supply and uptake of CO2 is 1–2% during the late Pleistocene. This long-term balance holds despite glacial–interglacial variations on shorter timescales. Our results provide support for a weathering feedback driven by atmospheric CO2 concentrations that maintains the observed fine mass balance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Late Pleistocene CO2 records.
Figure 2: Example calculation of the imbalance between long-term carbon fluxes.
Figure 3: Sensitivity of calculated imbalance.

Similar content being viewed by others

References

  1. Walker, J. C. G., Hays, P. B. & Kasting, J. F. Negative feedback mechanism for the long-term stabilization of earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  2. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  3. Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992).

    Article  Google Scholar 

  4. Volk, T. Cooling in the late Cenozoic. Nature 361, 123 (1993).

    Article  Google Scholar 

  5. Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988).

    Article  Google Scholar 

  6. Francois, L. M. & Walker, J. C. G. Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater. Am. J. Sci. 292, 81–135 (1992).

    Article  Google Scholar 

  7. Bickle, M. J. Metamorphic decarbonation, silicate weathering and the long-term carbon cycle. Terra Nova 8, 270–276 (1996).

    Article  Google Scholar 

  8. McCauley, S. E. & DePaolo, D. J. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 428–465 (Plenum, New York, 1997).

    Google Scholar 

  9. Edmond, J. M. & Huh, Y. Non-steady state carbonate recycling and implications for the evolution of atmospheric P CO 2 . Earth Planet. Sci. Lett. 216, 125–139 (2003).

    Article  Google Scholar 

  10. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  11. Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712–1714 (1999).

    Article  Google Scholar 

  12. Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310, 1313–1317 (2005).

    Article  Google Scholar 

  13. Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  Google Scholar 

  14. Key, R. M. et al. A global ocean carbon climatology: Results from GLODAP. Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Article  Google Scholar 

  15. Dessert, C. et al. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474 (2001).

    Article  Google Scholar 

  16. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  17. Sundquist, E. T. Steady-and non-steady-state carbonate-silicate controls on atmospheric CO2 . Quat. Sci. Rev. 10, 283–296 (1991).

    Article  Google Scholar 

  18. Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–63 (2003).

    Article  Google Scholar 

  19. Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  20. Broecker, W. S. & Sanyal, A. Does atmospheric CO2 police the rate of chemical weathering? Glob. Biogeochem. Cycles 12, 403–408 (1998).

    Article  Google Scholar 

  21. Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes 346pp (Elsevier Oceanography Series, Elsevier, Amsterdam, 2001).

    Google Scholar 

  22. Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 5–29 (1987).

    Google Scholar 

  23. Zeebe, R. E. & Westbroek, P. A simple model for the CaCO3 saturation state of the ocean: The ‘Strangelove’, the ‘Neritan’, and the ‘Cretan’ Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).

    Article  Google Scholar 

  24. Farrell, J. W. & Prell, W. L. Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4, 447–466 (1989).

    Article  Google Scholar 

  25. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article  Google Scholar 

  26. Munhoven, G. Glacial-interglacial changes of continental weathering: Estimates of the related CO2 and HCO3 flux variations and their uncertainties. Glob. Planet. Change 33, 155–176 (2002).

    Article  Google Scholar 

  27. Foster, G. L. & Vance, D. Negligible glacial–interglacial variation in continental chemical weathering rates. Nature 444, 918–921 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Berner for reviewing the manuscript. R.E.Z. is indebted to J. Knies for providing the search expression g.rillen@loomis.hi and for discussions about organic carbon burial that sparked thinking about long-term fluxes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard E. Zeebe or Ken Caldeira.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeebe, R., Caldeira, K. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nature Geosci 1, 312–315 (2008). https://doi.org/10.1038/ngeo185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing