Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High levels of nitryl chloride in the polluted subtropical marine boundary layer

Abstract

The cycling of halogen compounds in the lower atmosphere is poorly understood. It is known that halogens such as chlorine, bromine and iodine are converted from halides, which are relatively inert, to reactive radicals. These reactive radicals can affect ozone production and destruction, aerosol formation and the lifetimes of important trace gases such as methane, mercury and naturally occurring sulphur compounds. However, the processes by which halides are converted to reactive halogens are uncertain. Here, we report atmospheric measurements of nitryl chloride, an active halogen, along the southeast coastline of the United States and near Houston, Texas. We show that the main source of nitryl chloride is the night-time reaction of dinitrogen pentoxide with chloride-containing aerosol. The levels observed are much greater than earlier estimates based on numerical models and are sufficiently large to affect oxidant photochemistry in areas where nitrogen oxides and aerosol chloride sources coexist, such as urban areas and ship engine exhaust plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of the study area.
Figure 2: Measurements of ClNO2 and N2O5 on two different nights.
Figure 3: Production of Cl atoms from ClNO2 photolysis.

Similar content being viewed by others

References

  1. Platt, U. & Honninger, G. The role of halogen species in the troposphere. Chemosphere 52, 325–338 (2003).

    Article  Google Scholar 

  2. Tanaka, P. L. et al. Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmos. Environ. 37, 1393–1400 (2003).

    Article  Google Scholar 

  3. Knipping, E. M. & Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol. 37, 275–284 (2003).

    Article  Google Scholar 

  4. von Glasow, R. & Crutzen, P. J. Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 4, 589–608 (2004).

    Article  Google Scholar 

  5. Simpson, W. R. et al. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007).

    Article  Google Scholar 

  6. Platt, U. & Janssen, C. Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere. Faraday Discuss. 100, 175–198 (1995).

    Article  Google Scholar 

  7. Pszenny, A. A. P. et al. Evidence of inorganic chlorine gases other than hydrogen-chloride in marine surface air. Geophys. Res. Lett. 20, 699–702 (1993).

    Article  Google Scholar 

  8. Platt, U., Allan, W. & Lowe, D. Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane. Atmos. Chem. Phys. 4, 2393–2399 (2004).

    Article  Google Scholar 

  9. Spicer, C. W. et al. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394, 353–356 (1998).

    Article  Google Scholar 

  10. Law, K. S. & Stohl, A. Arctic air pollution: Origins and impacts. Science 315, 1537–1540 (2007).

    Article  Google Scholar 

  11. Finlayson-Pitts, B. J., Ezell, M. J. & Pitts, J. N. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2 . Nature 337, 241–244 (1989).

    Article  Google Scholar 

  12. Behnke, W., George, C., Scheer, V. & Zetzsch, C. Production and decay of ClNO2, from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments. J. Geophys. Res. 102, 3795–3804 (1997).

    Article  Google Scholar 

  13. Finlayson-Pitts, B. J. The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 103, 4801–4822 (2003).

    Article  Google Scholar 

  14. Behnke, W., Kruger, H. U., Scheer, V. & Zetzsch, C. Formation of atomic Cl from sea spray via photolysis of nitryl chloride—determination of the sticking coefficient of N2O5 on NaCl aerosol. J. Aerosol Sci. 22, S609–S612 (1991).

    Article  Google Scholar 

  15. Frenzel, A. et al. Heterogeneous interconversion reactions of BrNO2, ClNO2, Br2, and Cl2 . J. Phys. Chem. A 102, 1329–1337 (1998).

    Article  Google Scholar 

  16. Erickson, D. J. III, Seuzaret, C., Keene, W. C. & Gong, S. L. A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: Reactive chlorine emission inventory. J. Geophys. Res. 104, 8347–8372 (1999).

    Article  Google Scholar 

  17. McFiggans, G., Cox, R. A., Mossinger, J. C., Allan, B. J. & Plane, J. M. C. Active chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species. J. Geophys. Res. 107, 4271 (2002).

    Article  Google Scholar 

  18. Pechtl, S. & von Glasow, R. Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study. Geophys. Res. Lett. 34, L11813 (2007).

    Article  Google Scholar 

  19. Osthoff, H. D. et al. Observation of daytime N2O5 in the marine boundary layer during New England Air Quality Study—Intercontinental Transport and Chemical Transformation 2004. J. Geophys. Res. 111, D23S14 (2006).

    Google Scholar 

  20. Fuchs, N. A. & Sutugin, A. G. Highly Dispersed Aerosols (Ann Arbor Science Publishers, Newton, 1970).

    Google Scholar 

  21. Rossi, M. J. Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003).

    Article  Google Scholar 

  22. Clegg, S. L., Brimblecombe, P. W. & Wexler, A. S. A thermodynamic model of the system H–NH4–Na–SO4–NO3–Cl–H2O at 298.15 K. J. Phys. Chem. A 102, 2155–2171 (1998).

    Article  Google Scholar 

  23. Wilkins, R. A. Jr, Dodge, M. C. & Hisatsune, I. C. Kinetics of nitric oxide catalyzed decomposition of nitryl chloride and its related nitrogen isotope exchange reactions. J. Phys. Chem. 78, 2073–2076 (1974).

    Article  Google Scholar 

  24. Brown, S. S. et al. Nighttime removal of NOx in the summer marine boundary layer. Geophys. Res. Lett. 31, L07108 (2004).

    Google Scholar 

  25. Platt, U. et al. Free radicals and fast photochemistry during BERLIOZ. J. Atmos. Chem. 42, 359–394 (2002).

    Article  Google Scholar 

  26. Stutz, J. et al. Relative humidity dependence of HONO chemistry in urban areas. J. Geophys. Res. 109, D03307 (2004).

    Google Scholar 

  27. Alicke, B. et al. OH formation by HONO photolysis during the BERLIOZ experiment. J. Geophys. Res. 108, 8247 (2003).

    Article  Google Scholar 

  28. Roberts, J. M. et al. Measurements of PANs during the New England Air Quality Study, 2002. J. Geophys. Res. 112, D20306 (2007).

    Article  Google Scholar 

  29. Wang, L., Thompson, T., McDonald-Butler, E. C. & Allen, D. T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions. Environ. Sci. Technol. 41, 2095–2102 (2007).

    Article  Google Scholar 

  30. Hinrichsen, D. Coastal Waters of the World: Trends, Threats, and Strategies (Island Press, Washington, 1998).

    Google Scholar 

  31. Olivier, J. G. J. & Berdowski, J. J. M. in The Climate System (eds Berdowski, J., Guicherit, R. & Heij, B. J.) 33–78 (A. A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands, 2001).

    Google Scholar 

  32. Dentener, F. J. & Crutzen, P. J. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH. J. Geophys. Res. 98, 7149–7163 (1993).

    Article  Google Scholar 

  33. Slusher, D. L., Huey, L. G., Tanner, D. J., Flocke, F. M. & Roberts, J. M. A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. J. Geophys. Res. 109, D19315 (2004).

    Article  Google Scholar 

  34. McNeill, V. F., Patterson, J., Wolfe, G. M. & Thornton, J. A. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol. Atmos. Chem. Phys. 6, 1635–1644 (2006).

    Article  Google Scholar 

  35. Dubé, W. P. et al. Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy. Rev. Sci. Instrum. 77, 034101 (2006).

    Article  Google Scholar 

  36. Osthoff, H. D. et al. Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy. J. Geophys. Res. 111, D12305 (2006).

    Article  Google Scholar 

  37. Quinn, P. K. et al. Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. J. Geophys. Res. 111, D23S36 (2006).

    Google Scholar 

  38. Williams, E. J. et al. Intercomparison of ground-based NOy measurement techniques. J. Geophys. Res. 103, 22261–22280 (1998).

    Article  Google Scholar 

  39. Stark, H. et al. Atmospheric in situ measurement of nitrate radical (NO3) and other photolysis rates using spectroradiometry and filter radiometry. J. Geophys. Res. 112doi:10.1029/2006JD007578 (2007).

  40. Scheuer, E. et al. Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE. J. Geophys. Res. 108, 8370 (2003).

    Article  Google Scholar 

  41. Dibb, J. E. et al. Ship-based nitric acid measurements in the gulf of Maine during New England Air Quality Study 2002. J. Geophys. Res. 109, D20303 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the officers and crew of the NOAA R/V R. H. Brown for their assistance and professionalism. We thank S. Herndon and M. Zahniser for the use of their formaldehyde data. We thank J. Thornton for helpful discussions. We thank D. Tanner, G. Huey, A. Neuman, J. Nowak, W. P. Dubé and S. Ciciora for help with instrumentation. The EDGAR 3.2 NOx emissions data were obtained from the website http://www.mnp.nl/edgar/. This work was supported by the NOAA Climate Forcing and Air Quality Programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans D. Osthoff or James M. Roberts.

Supplementary information

Supplementary Information

Supplementary figures S1-S2 and tables S1-S2 (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osthoff, H., Roberts, J., Ravishankara, A. et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geosci 1, 324–328 (2008). https://doi.org/10.1038/ngeo177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing