Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increasing eolian dust deposition in the western United States linked to human activity

Abstract

Mineral aerosols from dust are an important influence on climate and on marine and terrestrial biogeochemical cycles. These aerosols are generated from wind erosion of surface soils. The amount of dust emission can therefore be affected by human activities that alter surface sediments. However, changes in regional- and global-scale dust fluxes following the rapid expansion of human populations and settlements over the past two centuries are not well understood. Here we determine the accumulation rates and geochemical properties of alpine lake sediments from the western interior United States for the past 5,000 years. We find that dust load levels increased by 500% above the late Holocene average following the increased western settlement of the United States during the nineteenth century. We suggest that the increased dust deposition is caused by the expansion of livestock grazing in the early twentieth century. The larger dust flux, which persists into the early twenty-first century, results in a more than fivefold increase in inputs of K, Mg, Ca, N and P to the alpine ecosystems, with implications for surface-water alkalinity, aquatic productivity and terrestrial nutrient cycling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sediment accumulation rates and physical properties.
Figure 2: Dust, bedrock and sediment isotopic characteristics.
Figure 3: Dust isotopic properties and texture.
Figure 4: Elemental fluxes for two alpine lakes in the San Juan Mountains, Colorado.

References

  1. Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).

    Article  Google Scholar 

  2. Blain, S. et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446, 1070-U1 (2007).

    Article  Google Scholar 

  3. Kawahata, H., Okamoto, T., Matsumoto, E. & Ujiie, H. Fluctuations of eolian flux and ocean productivity in the mid-latitude North Pacific during the last 200 kyr. Quat. Sci. Rev. 19, 1279–1291 (2000).

    Article  Google Scholar 

  4. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    Article  Google Scholar 

  5. Tegen, I., Lacis, A. A. & Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–422 (1996).

    Article  Google Scholar 

  6. Yoshioka, M., Mahowald, N., Dufresne, J. L. & Luo, C. Simulation of absorbing aerosol indices for African dust. J. Geophys. Res.-Atmos. 110 (2005).

  7. Painter, T. H. et al. The impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34doi:10.1029/2007GL030284 (2007).

  8. Mohamed, A. M. O. & El Bassouni, K. M. Externalities of fugitive dust. Environ. Monit. Assess. 130, 83–98 (2007).

    Article  Google Scholar 

  9. Neff, J. C., Reynolds, R. L., Belnap, J. & Lamothe, P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol. Appl. 15, 87–95 (2005).

    Article  Google Scholar 

  10. Abruzzi, W. S. The social and ecological consequences of early cattle ranching in the Little-Colorado River Basin. Hum. Ecol. 23, 75–98 (1995).

    Article  Google Scholar 

  11. Belnap, J. & Gillette, D. A. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance. J. Arid Environ. 39, 133–142 (1998).

    Article  Google Scholar 

  12. Liu, L. Y. et al. Wind erodibility of major soils in the farming–pastoral ecotone of China. J. Arid Environ. 68, 611–623 (2007).

    Article  Google Scholar 

  13. Neff, J. C., Harden, J. W. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. Forest Res.-Revue Canadienne De Recherche Forestiere 35, 2178–2187 (2005).

    Article  Google Scholar 

  14. McConnell, J. R., Aristarain, A. J., Banta, J. R., Edwards, P. R. & Simoes, J. C. 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertifications in South America. Proc. Natl Acad. Sci. USA 104, 5743–5748 (2007).

    Article  Google Scholar 

  15. Kang, S. C. et al. Dust records from three ice cores: Relationships to spring atmospheric circulation over the Northern Hemisphere. Atmos. Environ. 37, 4823–4835 (2003).

    Article  Google Scholar 

  16. Steinmann, P. & Shotyk, W. Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Mountains, Switzerland). Chem. Geol. 138, 25–53 (1997).

    Article  Google Scholar 

  17. Toney, J. L. & Anderson, R. S. A postglacial paleoecological record from the San Juan Mountains of Colorado: Fire, climate and vegetation history. The Holocene 16doi:10.1191/0959683606hl946rp (2006).

  18. Muhs, D. R. & Benedict, J. B. Eolian additions to late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range. Arctic Antarctic Alpine Res. 38, 120–130 (2006).

    Article  Google Scholar 

  19. Wells, K. C., Witek, M., Flatau, P., Kreidenwei, S. M. & Westphal, D. L. An analysis of seasonal surface dust aerosol concentrations in the western US (2001–2004): Observations and model predictions. Atmos. Environ. 41, 6585–6597 (2007).

    Article  Google Scholar 

  20. Bennett, V. C. & DePaolo, D. J. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geol. Soc. Am. Bull. 99, 674–685 (1987).

    Article  Google Scholar 

  21. DePaolo, D. J. Neodymium isotopes in the Colorado front range and crust–mantle evolution in the proterozoic. Nature 291, 193–196 (1981).

    Article  Google Scholar 

  22. Kempton, P. D., Harmon, R. S., Hawkesworth, C. J. & Moorbath, S. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, Southeastern Arizona. Geochim. Cosmochim. Acta 54, 3401–3426 (1990).

    Article  Google Scholar 

  23. Nelson, B. K. & Depaolo, D. J. 1,700-Myr greenstone volcanic successions in Southwestern North-America and isotopic evolution of Proterozoic mantle. Nature 312, 143–146 (1984).

    Article  Google Scholar 

  24. Nelson, B. K. & Depaolo, D. J. Rapid production of continental-crust 1.7 to 1.9 b.Y. ago—Nd isotopic evidence from the basement of the North-American mid-continent. Geol. Soc. Am. Bull. 96, 746–754 (1985).

    Article  Google Scholar 

  25. Norman, D. I., Condie, K. C., Smith, R. W. & Thomann, W. F. Geochemical and Sr and Nd isotopic constraints on the origin of late Proterozoic volcanics and associated tin-bearing granites from the Franklin Mountains, West Texas. Can. J. Earth Sci. 24, 830–839 (1987).

    Article  Google Scholar 

  26. Patchett, P. J. & Ruiz, J. Nd isotopes and the origin of Grenville-age rocks in Texas—implications for Proterozoic evolution of the United-States mid-continent region. J. Geol. 97, 685–695 (1989).

    Article  Google Scholar 

  27. Ramo, O. T. & Calzia, J. P. Nd isotopic composition of cratonic rocks in the southern Death Valley region: Evidence for a substantial Archean source component in Mojavia. Geology 26, 891–894 (1998).

    Article  Google Scholar 

  28. Middleton, N. J., Betzer, P. R. & Bull, P. A. Long-range transport of ‘giant’ aeolian quartz grains: linkage with discrete sedimentary sources and implications for protective particle transfer. Mar. Geol. 177, 411–417 (2001).

    Article  Google Scholar 

  29. Olivarez, A. M., Owen, R. M. & Rea, D. K. Geochemistry of eolian dust in Pacific pelagic sediments—Implications for paleoclimatic interpretations. Geochim. Cosmochim. Acta 55, 2147–2158 (1991).

    Article  Google Scholar 

  30. Plater, A. J., Boyle, J. F., Mayers, C., Turner, S. D. & Stroud, R. W. Climate and human impact on lowland lake sedimentation in Central Coastal California: The record from c. 650 AD to the present. Reg. Environ. Change 6, 71–85 (2006).

    Article  Google Scholar 

  31. Andresen, C. S., Björck, S., Bennike, O. & Bond, G. Holocene climate changes in southern Greenland: Evidence from lake sediments. J. Quat. Sci. 19, 783–795 (2004).

    Article  Google Scholar 

  32. Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    Article  Google Scholar 

  33. Abruzzi, W. S. Ecology resource redistribution, and Mormon settlement in Northeastern Arizona. Am. Anthropol. 91, 642–655 (1989).

    Article  Google Scholar 

  34. Floyd, M. L., Fleischner, T. L., Hanna, D. & Whitefield, P. Effects of historic livestock grazing on vegetation at Chaco Culture National Historic Park, New Mexico. Conserv. Biol. 17, 1703–1711 (2003).

    Article  Google Scholar 

  35. Sayre, N. The cattle boom in southern Arizona: Towards a critical political ecology. J. Southwest 41, 239–271 (1999).

    Google Scholar 

  36. Grahame, J. D. & Sisk, T. D. (eds) Canyons, Cultures and Environmental Change: An Introduction to the Land-use History of the Colorado Plateau (2002) (accessed November 5, 2007) http://www.cpluhna.nau.edu/index.htm.

  37. Fleischner, T. L. Ecological costs of livestock grazing in Western North-America. Conserv. Biol. 8, 629–644 (1994).

    Article  Google Scholar 

  38. Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl Acad. Sci. USA 96, 3396–3403 (1999).

    Article  Google Scholar 

  39. Sickman, J. O., Melack, J. M. & Clow, D. W. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol. Oceanogr. 48, 1885–1892 (2003).

    Article  Google Scholar 

  40. Wolfe, A. P., Baron, J. S. & Cornett, R. J. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol. 25, 1–7 (2001).

    Article  Google Scholar 

  41. Jassby, A. D., Reuter, J. E., Axler, R. P., Goldman, C. R. & Hackley, S. H. Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California Nevada). Wat. Resour. Res. 30, 2207–2216 (1994).

    Article  Google Scholar 

  42. Kopáček, J., Stuchlik, E. & Hardekopf, D. Chemical composition of the Tatra Mountain Lakes: Recovery from acidification. Biologia 61, S21–S33 (2006).

    Google Scholar 

  43. Larssen, T. & Carmichael, G. R. Acid rain and acidification in China: The importance of base cation deposition. Environ. Pollut. 110, 89–102 (2000).

    Article  Google Scholar 

  44. Rogora, M., Mosello, R. & Marchetto, A. Long-term trends in the chemistry of atmospheric deposition in Northwestern Italy: the role of increasing Saharan dust deposition. Tellus B 56, 426–434 (2004).

    Article  Google Scholar 

  45. Meixner, T. et al. Multidecadal hydrochemical response of a Sierra Nevada watershed: Sensitivity to weathering rate and changes in deposition. J. Hydrol. 285, 272–285 (2004).

    Article  Google Scholar 

  46. Patience, A. J., Lallier-Vergès, E., Alberic, P., Desprairies, A. & Tribovillard, N. Relationships between organo-mineral supply and early diagenesis in the lacustrine environment: A study of surficial sediments from the Lac du Bouchet (Haute Loire, France). Quat. Sci. Rev. 15, 213–221 (1996).

    Article  Google Scholar 

  47. Burns, D. A. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA—a critical review. Environ. Pollut. 127, 257–269 (2004).

    Article  Google Scholar 

  48. Galloway, J. N. et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Article  Google Scholar 

  49. Mikkelsen, R. L. & Bruulsema, T. W. Fertilizer use for horticultural crops in the US during the 20th century. Horttechnology 15, 24–30 (2005).

    Article  Google Scholar 

  50. Moulin, C. & Chiapello, I. Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophys. Res. Lett. 33doi:10.1029/2006GL025923 (2006).

  51. Mahowald, N. M. et al. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett. 33doi:10.1029/2006GL026126 (2006).

  52. Appleby, P. G. & Oldfield, F. The assessment of Pb-210 data from sites with varying sediment accumulation rates. Hydrobiologia 103, 29–35 (1983).

    Article  Google Scholar 

  53. Farmer, G. L., Broxton, D. E., Warren, R. G. & Pickthorn, W. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic-rocks at the Timber Mountain Oasis-Valley Caldera, Complex, SW Nevada—Implications for the origin and evolution of large-volume silicic magma bodies. Contrib. Mineral. Petrol. 109, 53–68 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by an A. W. Mellon Foundation grant to J.C.N. with additional analytical support for the project provided by the US Geological Survey Earth Surface Dynamics Program. Additional support was provided by the National Science Foundation of the United States and the National Oceanic and Atmospheric Administration. P. Molnar, A. Townsend, G. Miller and four anonymous reviewers provided helpful comments on earlier versions of this manuscript. We also appreciate the assistance of the Limnological Research Center Core Facility at the University of Minnesota in core density measurements for this study and Dave DeMaster for assistance with 210Pb dating.

Author information

Authors and Affiliations

Authors

Contributions

All authors commented on the manuscript and participated in the analysis of project results. J.C.N. and A.P.B. designed and carried out the study and J.C.N. developed the paper. G.L.F. carried out the isotopic analysis and aided in the interpretation of sediment isotopic chemistry. N.M.M. provided assistance in evaluating project results in comparison with global patterns in dust deposition. J.L.C., J.T.O., C.R.L. and R.L.R. analysed sediment core and dust chemistry. T.H.P. and C.C.L. developed and implemented dust sampling protocols for snowpack and assisted in sampling.

Corresponding author

Correspondence to J. C. Neff.

Supplementary information

Supplementary Information

Supplementary figures S1-3 and tables S1-3 (PDF 628 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, J., Ballantyne, A., Farmer, G. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geosci 1, 189–195 (2008). https://doi.org/10.1038/ngeo133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing