Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater

Abstract

Impact craters are observed on the surfaces of all rocky planets and satellites in our Solar System1; some impacts on Earth, such as the Cretaceous/Tertiary one that formed the Chicxulub impact crater2,3, have been implicated in mass extinctions4,5,6,7,8,9,10,11,12. The direction and angle of the impact—or its trajectory—is an important determinant of the severity of the consequent environmental damage, both in the downrange direction (direction bolide travels) and in the amount of material that enters the plume of material vaporized on impact2,13,14,15. The trajectory of the Chicxulub impact has previously been inferred largely from asymmetries in the gravity anomalies over the crater2,3. Here, we use seismic data to image the Chicxulub crater in three dimensions and demonstrate that the strong asymmetry of its subsurface correlates with significant pre-existing undulations on the end-Cretaceous continental shelf that was the site of this impact. These results suggest that for rocky planets, geological and geomorphological heterogeneities at the target site may play an important role in determining impact crater structure, in addition to impact trajectories. In those cases where heterogeneous targets are inferred, deciphering impact trajectories from final crater geometries alone may be difficult and require further data such as the distribution of ejecta.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location figure and Bouguer gravity map.
Figure 2: Interpreted line drawings of seismic profiles across the Chicxulub impact crater.
Figure 3: Evidence for pre-existing Cretaceous basin.
Figure 4: Stages of crater formation into the asymmetric pre-impact stratigraphy.

Similar content being viewed by others

References

  1. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  2. Schultz, P. H. & D’Hondt, S. Cretaceous-Tertiary (Chicxulub) impact angle and its consequences. Geology 24, 963–967 (1996).

    Article  Google Scholar 

  3. Hildebrand, A. R. et al. Mapping Chicxulub crater structure with gravity and seismic reflection data. Geol. Soc. Lond. Spec. Pub. 140, 177–193 (1998).

    Article  Google Scholar 

  4. Alvarez, L. W., Alvarez, W., Azaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  Google Scholar 

  5. Melosh, H. J., Schneider, N. M., Zahnle, K. J. & Latham, D. Ignition of global wildfires at the K/T boundary. Nature 343, 251–254 (1990).

    Article  Google Scholar 

  6. MacLeod, K. G., Whitney, D. L., Huber, B. T. & Koeberl, C. Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. GSA Bull. 119, 101–115 (2007).

    Article  Google Scholar 

  7. Pierazzo, E., Kring, D. A. & Melosh, H. J. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J. Geophys. Res. 103, 28607–28625 (1998).

    Article  Google Scholar 

  8. Pope, K. O., Baines, K. H., Ocampo, A. & Ivanov, B. A. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res. 102, 21645–21664 (1997).

    Article  Google Scholar 

  9. Ivanov, B. A. et al. Degassing of sedimentary rocks due to Chicxulub impact: Hydrocode and physical simulations. Geol. Soc. Am. Spec. Pap. 307, 125–140 (1996).

    Google Scholar 

  10. Kring, D. A. & Durda, D. D. Trajectories and distribution of material ejected from the Chicxulub impact crater: Implications for postimpact wildfires. J. Geophys. Res. 107 (2002) (doi:10.1029/2001JE001532).

  11. Pierazzo, E. Assessing atmospheric water injection from oceanic impacts. Lunar Planet. Sci. XXXVI, 1987 (2005).

    Google Scholar 

  12. Hildebrand, A. R. et al. A possible Cretaceous–Tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19, 867–871 (1991).

    Article  Google Scholar 

  13. Schultz, P. H. Effect of impact angle on vaporization. J. Geophys. Res. 101, 21117–21136 (1996).

    Article  Google Scholar 

  14. Pierazzo, E. & Melosh, H. J. Hydrocode modelling of Chicxulub as an oblique impact event. Earth Planet. Sci. Lett. 165, 163–176 (1999).

    Article  Google Scholar 

  15. Pierazzo, E. & Melosh, H. J. Hydrocode modelling of oblique impacts: The fate of the projectile. Meteor. Planet. Sci. 35, 117–130 (2000).

    Article  Google Scholar 

  16. Sharpton, V. L. et al. Model of the Chicxulub impact basin. Geol. Soc. Am. Spec. Pap. 307, 55–74 (1996).

    Google Scholar 

  17. Morgan, J. et al. Size and morphology of the Chicxulub impact crater. Nature 390, 472–476 (1997).

    Article  Google Scholar 

  18. Morgan, J. & Warner, M. Chicxulub: The third dimension of a multi-ring basin. Geology 27, 407–410 (1999).

    Article  Google Scholar 

  19. Morgan, J. V. et al. Peak-ring formation in large impact craters: Geophysical constraints from Chicxulub. Earth Planet. Sci. Lett. 183, 347–354 (2000).

    Article  Google Scholar 

  20. Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. Proc. Lunar Planet. Conf. 9, 3843–3875 (1978).

    Google Scholar 

  21. Morgan, J. et al. Chicxulub crater seismic survey prepares way for future drilling. Eos Trans. Am. Geophys. Union 86, 325–328 (2005).

    Article  Google Scholar 

  22. Ames, D. E., Jonasson, I. R., Gibson, H. L. & Pope, K. O. Impact-generated hydrothermal system: Constraints from the large Paleoproterozoic Sudbury crater. Can. Geol. Surv. Canada Contr. Ser. 2003306, 55–100 (2006).

    Google Scholar 

  23. Pope, K. O., Ocampo, A. C., Kinsland, G. L. & Smith, R. Surface expression of the Chicxulub crater. Geology 24, 527–530 (1996).

    Article  Google Scholar 

  24. Camargo-Zanoguera, A. & Suarez-Reynoso, G. Evidencia Sismica del crater impacto de Chicxulub. G. Bol. Asoc. Mex. Geof. Expl. 34, 1–28 (1994).

    Google Scholar 

  25. Christeson, G. L., Nakamura, Y., Bufler, R. T., Morgan, J. & Warner, M. Deep crustal structure of the Chicxulub impact crater. J. Geophys. Res. 106, 21751–21769 (2001).

    Article  Google Scholar 

  26. Warner, M. et al. High-resolution images of the lower crust: Deep seismic reflections from 15–180 Hz. Tectonophysics 232, 225–237 (1994).

    Article  Google Scholar 

  27. Lana, C., Gibson, R. & Reimold, W. U. Impact tectonics in the core of the Vredefort Dome; implications for central uplift formation. Meteor. Planet. Sci. 38, 1093–1108 (2003).

    Article  Google Scholar 

  28. Gifford, A. W. & Maxwell, T. A. Asymmetric terracing of lunar highlands craters: Influence of pre-impact topography and structure. Proc. Lunar Planet. Conf. 10, 2597–2607 (1979).

    Google Scholar 

  29. Gifford, A. W., Maxwell, T. A. & El-Baz, F. Geology of the lunar farside crater Necho. Moon Planets 21, 25–42 (1979).

    Article  Google Scholar 

  30. Vermeesch, P. M. Geophysical Study of the Chicxulub Impact Crater. Thesis, Imperial College London, UK, 418 p (2006).

Download references

Acknowledgements

The authors thank the Captain and Crew of the R/V Maurice Ewing for a successful cruise. Appreciation is owed to several Mexican and US colleagues onboard and on land for support during the experiment. Study financially supported by the National Science Foundation (NSF-OCE 0221101) and the Natural Environment Research Council. Manuscript support provided by Jackson School of Geosciences and Geology Foundation at UT Austin. Review by A. Wittman improved the manuscript. UTIG Contribution No. 1889 and IARC Contribution No. 2007-0951.

Author information

Authors and Affiliations

Authors

Contributions

Contributions include project planning and leadership by S.P.S.G., P.J.B., G.L.C., J.V.M., J.U.-F. and M.R.W., data acquisition by all authors, data processing by S.P.S.G., P.J.B., M.M., G.L.C. and K.M.-C. and interpretation by S.P.S.G., M.M., K.M.-C. and Z.F.P.

Corresponding authors

Correspondence to Sean P. S. Gulick, Matthew McDonald, Zulmacristina F. Pearson or Peggy M. Vermeesch.

Supplementary information

Supplementary Information

Supplementary information for figures 1–6 (PDF 24295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulick, S., Barton, P., Christeson, G. et al. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geosci 1, 131–135 (2008). https://doi.org/10.1038/ngeo103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing