Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quaternary tectonic response to intensified glacial erosion in an orogenic wedge

Abstract

Active orogens are thought to behave as internally deforming critical-taper wedges that are in rough long-term equilibrium with tectonic influx and erosional outflux. Spatial and temporal variations in climate are therefore hypothesized to have a significant influence on denudation, topography and deformation of orogens, thereby affecting wedge taper. However, the impact of the most severe transition in Northern Hemisphere climate during the Cenozoic era—the onset of glaciation—has hitherto not been empirically documented. Here we analyse the spatial patterns of denudation and deformation, and their temporal variations, in the heavily glaciated St Elias orogen in southern Alaska. Low-temperature thermochronometry, thermokinematic modelling and offshore seismic reflection and borehole data suggest that the global-scale intensification of glaciation in the middle Pleistocene epoch enhanced glacier growth and caused ice streams to advance to the edge of the continental shelf. This led to focused denudation across the subaerial reaches of the orogen and burial of the actively deforming wedge toe by the eroded sediment. We propose that this climatically driven mass redistribution forced a structural reorganization of the orogen to maintain critical taper. Our empirical results thus support decades of numerical model predictions of orogenesis and provide compelling field evidence for the significant impact of climate change on tectonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermochronometry and tectonics of the St Elias orogen.
Figure 2: History of glaciation, bedrock cooling and sedimentation.
Figure 3: Variation in bedrock cooling rate, topography and climate.
Figure 4: Two-dimensional thermokinematic model.
Figure 5: Seismic reflection profiles.
Figure 6: Proposed model of climate-related influences on orogen kinematics.

Similar content being viewed by others

References

  1. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature 346, 29–34 (1990).

    Article  Google Scholar 

  2. Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for rise of the Andes. Nature 425, 792–797 (2003).

    Article  Google Scholar 

  3. Huntington, K. W., Blythe, A. E. & Hodges, K. V. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett. 252, 107–118 (2006).

    Article  Google Scholar 

  4. Tomkin, J. H. & Roe, G. H. Climate and tectonic controls on glaciated critical-taper orogens. Earth Planet. Sci. 262, 385–397 (2007).

    Article  Google Scholar 

  5. Koons, P. O. Two-sided orogen: Collision and erosion from the sandbox to the Southern Alps, New Zealand. Geology 18, 679–682 (1990).

    Article  Google Scholar 

  6. Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K.) 1–18 (Chapman and Hall, 1992).

    Book  Google Scholar 

  7. Willett, S. D. Orogeny and orography; the effects of erosion on the structure of mountain belts. J. Geophys. Res 104, 28957–28982 (1999).

    Article  Google Scholar 

  8. Whipple, K. X. & Meade, B. J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state. J. Geophys. Res. 109, F01011 (2004).

    Article  Google Scholar 

  9. Stolar, D. B. et al. Tectonics, climate, and landscape evolution. Geol. Soc. Am. Spec. Pap. 398, 241–250 (2006).

    Google Scholar 

  10. Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    Article  Google Scholar 

  11. Dahlen, F. A., Suppe, J. & Davis, D. Mechanics of fold-and-thrust belts and accretionary wedges; cohesive Coulomb theory. J. Geophys. Res. 89, 10,087–10,101 (1984).

    Article  Google Scholar 

  12. Brocklehurst, S. H. & Whipple, K. X. Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42, 1–24 (2002).

    Article  Google Scholar 

  13. Montgomery, D. R. Valley formation by fluvial and glacial erosion. Geology 30, 1047–1050 (2002).

    Article  Google Scholar 

  14. Tomkin, J. H. Coupling glacial erosion and tectonics at active orogens: A numerical modeling study. J. Geophys. Res.-Earth Surf. 112, F02015 (2007).

    Article  Google Scholar 

  15. Plafker, G., Moore, J. C. & Winkler, G. R. in The Geology of Alaska: Geological Society of America, Geology of North America, G-1 (eds Plafker, G. & Berg, H. C.) 389–449 (Boulder, 1994).

    Google Scholar 

  16. O’Sullivan, P. B. & Currie, L. D. Thermotectonic history of Mt Logan, Yukon Territory, Canada: Implications of multiple episodes of middle to late Cenozoic. Earth Planet. Sci. Lett. 144, 251–261 (1996).

    Article  Google Scholar 

  17. Bruhn, R. L., Pavlis, T., Plafker, G. & Serpa, L. Deformation during terrane accretion in the Saint Elias orogen, Alaska. Geol. Soc. Am. Bull. 116, 771–787 (2004).

    Article  Google Scholar 

  18. Pavlis, G. L., Picornell, C., Serpa, L., Bruhn, R. L. & Plafker, G. Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera. Tectonics 23, 1–14 (2004).

    Article  Google Scholar 

  19. Fletcher, H. J. & Freymueller, J. T. New constraints on the motion of the Fairweather fault. Alaska, from GPS observations. Geophys. Res. Lett. 30, 1139–1142 (2003).

    Article  Google Scholar 

  20. Elliott, J., Freymueller, J. T. & Larsen, C. F. Using GPS to untangle the tectonics of the Saint Elias orogen, Alaska. Eos Trans. (AGU 87 (52) Fall Meet. Suppl., Abstract G42A-03 2006).

  21. Péwé, T. L. Quaternary geology of Alaska. US Geol. Survey Professional Paper 835, 145 (1975).

    Google Scholar 

  22. Berger, A. L. & Spotila, J. A. Denudation and deformation in a glaciated orogenic wedge: The St. Elias Orogen, Alaska. Geology 36, 523–526 (2008).

    Article  Google Scholar 

  23. Rea, D. K. & Snoeckx, H. in Proc. Ocean Drilling Program, Scientific Results: Ocean Drilling Program (eds Rea, D. K., Basov, I. A., Scholl, D. W. & Allan, J. F.) 247–256 (College Station, 1995).

    Google Scholar 

  24. Lagoe, M. B. & Zellers, S. D. Depositional and microfaunal response to Pliocene climate change and tectonics in the eastern Gulf of Alaska. Mar. Micropaleontol. 27, 121–140 (1996).

    Article  Google Scholar 

  25. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  26. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  27. Berger, W. H. & Jansen, E. The polar oceans and their role in shaping the global environment. AGU Geophys. Monogr. 84, 295–311 (1994).

    Google Scholar 

  28. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric CO2 . Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  29. Cox, A. & Engebretson, D. C. Change in motion of Pacific plate at 5 Myr BP. Nature 313, 472–474 (1985).

    Article  Google Scholar 

  30. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions of geomagnetic reversal time-scale on estimate of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    Article  Google Scholar 

  31. Gulick, S., Lowe, L., Pavlis, T., Mayer, L. & Gardner, J. Geophysical insights into the Transition fault debate: Propagating strike-slip in response to stalling Yakutat block subduction in the Gulf of Alaska. Geology 35, 763–766 (2007).

    Article  Google Scholar 

  32. Spotila, J. A., Buscher, J. T., Meigs, A. J. & Reiners, P. W. Long-term glacial erosion of active mountain belts: Example of the Chugach-St. Elias Range, Alaska. Geology 32, 501–504 (2004).

    Article  Google Scholar 

  33. Berger, A. L. et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic-climatic interactions within the central St. Elias Orogen, Alaska. Earth Planet. Sci. Lett. 270, 13–24 (2008).

    Article  Google Scholar 

  34. Andrews, J. T. Glacier power, mass balances, velocities, and erosion potential. Z. Geomorphol. N.F. Suppl. Bd. 13, 1–17 (1972).

    Google Scholar 

  35. Johnston, S. A. Geologic Structure and Exhumation Accompanying Yakutat Terrane Collision, Southern Alaska. M.S. thesis, Oregon State Univ. (2005).

  36. Cundall, P. A. & Board, M. in Numerical Methods in Geomechanics (ed. Swoboda, G.) 2101–2108 (Balkema, 1989).

    Google Scholar 

  37. ITASCA, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions, version 3.1), Minneapolis (2006).

  38. Johnsson, M. J., Pawlewicz, M. J., Harris, A. G. & Valin, Z. C. Vitrinite reflectance and conodont color alteration index data from Alaska: Data to accompany the thermal maturity map of Alaska. US Geol. Surv. Open-File Report 92–409 (1992).

  39. Johnsson, M. J. & Howell, D. G. Thermal maturity of sedimentary basins in Alaska: an overview. US Geol. Surv. Report B 2142, 1–9 (1996).

    Google Scholar 

  40. Sheaf, M. A., Serpa, L. & Pavlis, T. L. Exhumation rates in the St. Elias Mountains, Alaska. Tectonophysics 367, 1–11 (2003).

    Article  Google Scholar 

  41. Ketcham, R. A. Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem. 58, 275–314 (2005).

    Article  Google Scholar 

  42. Moore, M. A. & England, P. C. On the inference of denudation rates from cooling ages of minerals. Earth Planet. Sci. Lett. 185, 265–284 (2001).

    Article  Google Scholar 

  43. Zellers, S. Foraminiferal sequence biostratigraphy and seismic stratigraphy of a tectonically active margin; the Yakataga formation, northeastern Gulf of Alaska. Mar. Micropaleontol. 26, 255–271 (1995).

    Article  Google Scholar 

  44. Worthington, L., Gulick, S. & Pavlis, T. Identifying active structures in the Kayak and Pamplona Zones: Implications for offshore tectonics of the Yakutat microplate, Gulf of Alaska. AGU Monograph (in the press).

  45. Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nature Geosci. 1, 365–369 (2008).

    Article  Google Scholar 

  46. Powell, R. D. & Cooper, J. M. A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in glacier-influenced sedimentation on high-latitude continental margins. Geol. Soc. Lond. Spec. Publ. 203, 215–244 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank collaborators in studying the St Elias orogen and other colleagues for many helpful discussions and ideas, including E. Berger, R. Law, J. Buscher and particularly all STEEP (St. Elias Erosion-Tectonics Project) participants. Reviews by S. Brocklehurst and E. Kirby contributed significantly to the manuscript. Support was provided by the National Science Foundation (NSF-EAR 0409224, NSF-EAR 0408584, NSF-EAR 0735402, NSF-ODP 0351620).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the interpretations and hypotheses presented. Writing was done by A.L.B., with contributions by J.A.S. and S.P.S.G. Low-temperature thermochronometry was carried out by A.L.B. and J.A.S. ArcGIS analyses were carried out by A.L.B. Thermokinematic modelling was carried out by P.U., with contributions by A.L.B. HeFTy age calculations were done by A.L.B. Figures were created by A.L.B (Figs 13 and 6), S.P.S.G. (Fig. 5) and P.U. (Fig. 4). Structural analysis and models were done by A.L.B., J.B.C. and T.L.P. Seismic reflection gathering, processing and interpretation were carried out by S.P.S.G., L.A.W., J.M.J. and B.A.W. Project planning was done by T.L.P., J.A.S. and S.P.S.G.

Corresponding authors

Correspondence to Aaron L. Berger or James A. Spotila.

Supplementary information

Supplementary Information

Supplementary Information (PDF 550 kb)

Supplementary Information

Supplementary Movie (MOV 3351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, A., Gulick, S., Spotila, J. et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nature Geosci 1, 793–799 (2008). https://doi.org/10.1038/ngeo334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing