Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antarctic temperature at orbital timescales controlled by local summer duration

Abstract

During the late Pleistocene epoch, proxies for Southern Hemisphere climate from the Antarctic ice cores vary nearly in phase with Northern Hemisphere insolation intensity at the precession and obliquity timescales. This coherence has led to the suggestion that Northern Hemisphere insolation controls Antarctic climate. However, it is unclear what physical mechanisms would tie southern climate to northern insolation. Here we call on radiative equilibrium estimates to show that Antarctic climate could instead respond to changes in the duration of local summer. Simple radiative equilibrium dictates that warmer annual average atmospheric temperatures occur as a result of a longer summer, as opposed to a more intense one, because temperature is more sensitive to insolation when the atmosphere is cooler. Furthermore, we show that a single-column atmospheric model reproduces this radiative equilibrium effect when forced exclusively by local Antarctic insolation, generating temperature variations that are coherent and in phase with proxies of Antarctic atmospheric temperature and surface conditions. We conclude that the duration of Southern Hemisphere summer is more likely to control Antarctic climate than the intensity of Northern Hemisphere summer with which it (often misleadingly) covaries. In our view, near interhemispheric climate symmetry at the obliquity and precession timescales arises from a northern response to local summer intensity and a southern response to local summer duration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different measures of insolation covary with one another.
Figure 2: The seasonal cycle in Antarctic insolation and atmospheric temperature.
Figure 3: Temperature variability in the Antarctic over the past 350 kyr.
Figure 4: Coherence and phase between proxy and model estimates of mean annual atmospheric temperature at Dome F.

Similar content being viewed by others

References

  1. Hays, J. in Antarctic Glacial History and World Palaeoenvironments (ed. Van Zinderen Bakker, E.) 57–71 (A.A. Balkema, Rotterdam, 1978).

    Google Scholar 

  2. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    Article  Google Scholar 

  3. Lorius, C. et al. A 150, 000-year climatic record from Antarctic ice. Nature 316, 591–596 (1985).

    Article  Google Scholar 

  4. Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  5. Masson, V. et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res. 54, 348–358 (2000).

    Article  Google Scholar 

  6. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  7. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

    Article  Google Scholar 

  8. Alley, R., Brook, E. & Anandakrishnan, S. A northern lead in the orbital band: North–south phasing of Ice-Age events. Quat. Sci. Rev. 21, 431–441 (2002).

    Article  Google Scholar 

  9. Barrows, T., Juggins, S., De Deckker, P., Calvo, E. & Pelejero, C. Long-term sea surface temperature and climate change in the Australian–New Zealand region. Paleoceanography 22, 1–17 (2007).

    Article  Google Scholar 

  10. Imbrie, J. et al. On the structure and origin of major glaciation cycles.2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    Article  Google Scholar 

  11. Gildor, H. & Tziperman, E. Physical mechanisms behind biogeochemical glacial–interglacial CO2 variations. Geophys. Res. Lett. 28, 2421–2424 (2001).

    Article  Google Scholar 

  12. Mercer, J. in Climate Processes and Climate Sensitivity Vol. 29 (ed. Ewing, M.) 307–313 (Geophysical Monograph, American Geophysical Union, 1984).

    Book  Google Scholar 

  13. Charles, C., Lynch-Stieglitz, J., Ninnemann, U. & Fairbanks, R. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996).

    Article  Google Scholar 

  14. Bard, E., Rostek, F. & Songzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997).

    Article  Google Scholar 

  15. Broecker, W. & Henderson, G. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352–364 (1998).

    Article  Google Scholar 

  16. Huybers, P. & Curry, W. Links between the annual, Milankovitch, and continuum of climate variability. Nature 441, 329–332 (2006).

    Article  Google Scholar 

  17. Huybers, P Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006).

    Article  Google Scholar 

  18. Kukla, J. Missing link between Milankovitch and climate. Nature 253, 600–603 (1975).

    Article  Google Scholar 

  19. Milankovitch, M. Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem (Royal Serbian Academy, Belgrade, 1941).

    Google Scholar 

  20. Rubincam, D. Black body temperature, orbital elements, the Milankovitch precession index, and the Seversmith psychroterms. Theor. Appl. Climatol. 79, 111–131 (2004).

    Article  Google Scholar 

  21. Kim, S., Crowley, T. & Stossel, A. Local orbital forcing of Antarctic climate change during the last interglacial. Science 280, 728–730 (1998).

    Article  Google Scholar 

  22. Stott, L., Timmermann, A & Thunell, R. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 318, 435–438 (2007).

    Article  Google Scholar 

  23. Hack, J., Truesdale, J., Pedretti, J. & Petch, J. SCAM user’s guide. <http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/> (2004).

  24. Collins, W. et al. The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Clim. 19, 2144–2161 (2006).

    Article  Google Scholar 

  25. Hudson, S. & Brandt, R. A look at the surface-based temperature inversion on the Antarctic Plateau. J. Clim. 18, 1673–1696 (2005).

    Article  Google Scholar 

  26. Vimeux, F., Cuffey, K. & Jouzel, J. New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet. Sci. Lett. 203, 829–843 (2002).

    Article  Google Scholar 

  27. Van Lipzig, N., Van Meijgaard, E. & Oerlemans, J. The effect of temporal variations in the surface mass balance and temperature-inversion strength on the interpretation of ice-core signals. J. Glaciol. 48, 611–621 (2002).

    Article  Google Scholar 

  28. Bender, M. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett. 204, 275–289 (2002).

    Article  Google Scholar 

  29. Gildor, H. & Ghil, M. Phase relations between climate proxy records: Potential effect of seasonal precipitation changes. Geophys. Res. Lett. 29, 1–4 (2002).

    Article  Google Scholar 

  30. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    Article  Google Scholar 

  31. Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

    Article  Google Scholar 

  32. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  33. Stephens, B. & Keeling, R. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  34. Sigman, D. & Boyle, E. Palaeoceanography: Antarctic stratification and glacial CO2 . Nature 412, 605–606 (2001).

    Article  Google Scholar 

  35. Imbrie, J. & Imbrie, J. Modeling the climatic response to orbital variations. Science 207, 943–953 (1980).

    Article  Google Scholar 

  36. Roe, G. In defense of Milankovitch. Geophys. Res. Lett. 33, 1–4 (2006).

    Article  Google Scholar 

  37. Adhémar, J. A. Révolutions de la Mer: Déluges Períodiques (Carilian-Goeury et V. Dalmont, Paris, 1842).

    Google Scholar 

  38. Denton, G. & Hughes, T. Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quat. Sci. Rev. 21, 193–202 (2002).

    Article  Google Scholar 

  39. Henderson, G. & Slowey, N. Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–66 (2000).

    Article  Google Scholar 

  40. Parrenin, F., Jouzel, J., Waelbroeck, C., Ritz, C. & Barnola, J. Dating the Vostok ice core by an inverse method. J. Geophys. Res. 106(D23), 31837–31851 (2001).

    Article  Google Scholar 

  41. Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000).

    Article  Google Scholar 

  42. Schulz, K. & Zeebe, R. Pleistocene glacial terminations triggered by synchronous changes in Southern and Northern Hemisphere insolation: The insolation canon hypothesis. Earth Planet. Sci. Lett. 249, 326–336 (2006).

    Article  Google Scholar 

  43. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  44. Hines, K., Grumbine, R. W., Bromwich, D. & Cullather, R. Surface energy balance of the NCEP MRF and NCEPNCAR reanalysis in Antarctic latitudes during FROST. Weath. Forecast. 14, 851–866 (1999).

    Article  Google Scholar 

  45. Joussaume, S. & Braconnot, P. Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res. 102, 1943–1956 (1997).

    Article  Google Scholar 

  46. Vimeux, F., Masson, V., Jouzel, J., Stievenard, M. & Petit, J. Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398, 410–413 (1999).

    Article  Google Scholar 

  47. Berger, A. & Loutre, M. F. Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Planet. Sci. Lett. 111, 369–382 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript benefited from comments by R. Alley, D. Barrell, P. Blossey, I. Eisenman, J. Gebbie, A. Giese, K. Kawamura, R. Pierrehumbert, A. Stine and J. Severinghaus. We are also grateful to K. Kawamura for providing the δO2/N2 record and to C. Walker and D. Abbot for technical assistance. P.H. received support from the Comer Science and Education Foundation (CSEF) and NSF award 0645936. G.D. is supported by NOAA and CSEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Huybers.

Supplementary information

Supplementary Information

Supplementary Information (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huybers, P., Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci 1, 787–792 (2008). https://doi.org/10.1038/ngeo311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing