Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array

Abstract

Following its subduction, oceanic crust either contributes to the source of island-arc volcanic rocks or it is recycled into the mantle1. Most2,3, but not all authors4 believe that recycled crust is incorporated into the plume source of oceanic basalts. The hafnium (Hf) and neodymium (Nd) isotopic compositions of basalts from oceanic islands and mid-ocean ridges exhibit a linear relationship—the mantle array—which is thought to result from mixing between material from the depleted mantle and an enriched recycled component. Here, we model the Hf–Nd isotopic composition of oceanic basalts as a mixture of recycled oceanic crust and depleted mantle and find that recycling of basalt alone is not sufficient to reproduce the mantle array. We conclude that oceanic sediments, which have a relatively high 176Hf/177Hf ratio, must also be recycled. Combining oceanic sediments with recycled oceanic basalts and subsequent mixing with depleted mantle peridotite produces Hf and Nd isotopic compositions that coincide with the mantle array. The composition of bulk continental crust requires the existence of a complementary low 176Hf/177Hf reservoir, which we suggest is zircon-rich sediment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ɛHf and ɛNd values of oceanic basalts and oceanic sediments.
Figure 2: ɛHf versus ɛNd diagrams comparing modelled and measured data.
Figure 3: Comparison between our Monte Carlo simulations and measured values for OIB and MORB.

Similar content being viewed by others

References

  1. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  Google Scholar 

  2. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  3. Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369 (2005).

    Article  Google Scholar 

  4. Niu, Y. & O’Hara, M. J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res. 108, 2209 (2003).

    Google Scholar 

  5. Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).

    Article  Google Scholar 

  6. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf CHUR value. Goldschmidt Conf. Abstracts 2007 A116 (2007).

  7. van de Flierdt, T. et al. Global neodymium-hafnium isotope systematics—revisited. Earth Planet. Sci. Lett. 259, 432 (2007).

    Article  Google Scholar 

  8. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  9. Carpentier, M., Chauvel, C. & Mattielli, N. Strong relationship between Hf–Nd–Pb isotopes in atlantic sediments and the Lesser Antilles arc composition. Eos Trans. AGU 87, 52 Fall Meeting Suppl., Abstract U21A-0804 (2006).

  10. Godfrey, L. V. et al. The Hf isotopic composition of ferromanganese nodules and crusts and hydrothermal manganese deposits: Implications for seawater Hf. Earth Planet. Sci. Lett. 151, 91–105 (1997).

    Article  Google Scholar 

  11. Albarède, F., Simonetti, A., Vervoort, J. D., Blichert-Toft, J. & Abouchami, W. A Hf–Nd isotopic correlation in ferromanganese nodules. Geophys. Res. Lett. 25, 3895–3898 (1998).

    Article  Google Scholar 

  12. Plank, T., Kelley, K. A., Murray, R. W. & Quintin Stern, L. Chemical composition of sediments subducting at the Izu-Bonin trench. Geochem. Geophys. Geosyst. 8, Q04I16 (2007).

    Article  Google Scholar 

  13. Chauvel, C., Lewin, E., Carpentier, M. & Marini, J.-C. Recycled oceanic material controls the Hf–Nd OIB array. Eos Trans. AGU 87, 52 Fall Meeting Suppl., Abstract U14B-07 (2006).

  14. Patchett, P. J., White, W. M., Feldmann, H., Kielinczuck, S. & Hofmann, A. W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 69, 365–378 (1984).

    Article  Google Scholar 

  15. Salters, V. J. M. & White, W. M. Hf isotope constraints on mantle evolution. Chem. Geol. 145, 447–460 (1998).

    Article  Google Scholar 

  16. Hofmann, A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  17. Su, Y. J. Mid-ocean Ridge Basalt Trace Element Systematics: Constraints From Database Management, ICP-MS Analyses, Global Data Compilation and Petrologic Modeling. Thesis, Columbia Univ., 472pp (2002).

  18. Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarède, F. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79–99 (1999).

    Article  Google Scholar 

  19. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  20. Richards, A. et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773–796 (2005).

    Article  Google Scholar 

  21. Ben Othman, D., White, W. M. & Patchett, J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 94, 1–21 (1989).

    Article  Google Scholar 

  22. McLennan, S. M., Taylor, S. R., Culloch, M. T. M. & Maynard, J. B. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54, 2015–2050 (1990).

    Article  Google Scholar 

  23. White, W. M., Dupré, B. & Vidal, P. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demera Plain region, Atlantic Ocean. Geochim. Cosmochim. Acta 49, 1875–1886 (1985).

    Article  Google Scholar 

  24. Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J. Petrol. 40, 1579–1611 (1999).

    Article  Google Scholar 

  25. Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192, 331–346 (2001).

    Article  Google Scholar 

  26. David, K., O’Nions, R. K., Belshaw, N. S. & Arden, J. W. The Hf isotope composition of global seawater and the evolution of Hf isotopes in the deep Pacific Ocean from Fe–Mn crusts. Chem. Geol. 178, 23–42 (2001).

    Article  Google Scholar 

  27. Vlastelic, I., Carpentier, M. & Lewin, E. Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments. Geochem. Geophys. Geosyst. 6, Q03003 (2005).

    Google Scholar 

  28. <http://georoc.mpch-mainz.gwdg.de/georoc/>.

  29. <http://www.petdb.org/petdbWeb/index.jsp>.

  30. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  31. McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2, 2000GC000109 (2001).

    Article  Google Scholar 

  32. Gallet, S., Jahn, B.-M., Lanoë, B. V. V., Dia, A. & Rossello, E. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet. Sci. Lett. 156, 157–172 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A.W. Hofmann for his suggestions that helped improve the manuscript. The work was supported by grants from ‘Dyeti’ CNRS program and ANR in France.

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived the model and wrote the paper. E.L. made the numerical simulation. M.C. and J.-C.M. contributed to the data compilation and N.T.A. suggested several important ideas. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Catherine Chauvel.

Supplementary information

Supplementary Information, Fig. S1

Supplementary figure S1 (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvel, C., Lewin, E., Carpentier, M. et al. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geosci 1, 64–67 (2008). https://doi.org/10.1038/ngeo.2007.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo.2007.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing