Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Core–mantle boundary heat flow

Abstract

The Earth can be viewed as a massive heat engine, with various energy sources and sinks. Insights into its evolution can be obtained by quantifying the various energy contributions in the context of the overall energy budget. Over the past decade, estimates of the heat flow across the core–mantle boundary, or across a chemical boundary layer above it, have generally increased by a factor of 2 to 3. The current total heat flow at the Earth's surface — 46 ± 3 terawatts (1012 J s−1) — involves contributions from heat entering the mantle from the core, as well as mantle cooling, radiogenic heating of the mantle from the decay of radioactive elements, and various minor processes such as tidal deformation, chemical segregation and thermal contraction gravitational heating. The increased estimates of deep-mantle heat flow indicate a more prominent role for thermal plumes in mantle dynamics, more extensive partial melting of the lowermost mantle in the past, and a more rapidly growing and younger inner core and/or presence of significant radiogenic material in the outer core or lowermost mantle as compared with previous estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global heat-flow balance.
Figure 2: Core–mantle boundary temperature contrast.
Figure 3: Deep-mantle heat-flow components.
Figure 4: Post-perovskite ocurrence.
Figure 5: Thermal evolution for plate tectonics.

Similar content being viewed by others

References

  1. Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).

    Google Scholar 

  2. Jaupart, C., Labrosse, S. & Mareschal, J.-C. Temperatures, heat and energy in the mantle of the Earth. Treatise on Geophys. (in the press).

  3. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Google Scholar 

  4. Nolet, G., Karato, S.-I. & Montelli, R. Plume fluxes from seismic tomography. Earth Planet. Sci. Lett. 248, 685–699 (2006).

    Google Scholar 

  5. Stacey, F. D. & Loper, D. E. The thermal boundary layer interpretation of D″ and its role as a plume source. Phys. Earth Planet Inter. 33, 45–55 (1983).

    Google Scholar 

  6. Davies, G. F. Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots. J. Geophys. Res. 93, 10467–10480 (1988).

    Google Scholar 

  7. Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Google Scholar 

  8. Williams, Q. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 73–81 (AGU, Washington DC, 1998).

    Google Scholar 

  9. Holland, K. G. & Ahrens, T. J. Melting of (Mg,Fe)2SiO4 at the core-mantle boundary of the Earth. Science 275, 1623–1625 (1997).

    Google Scholar 

  10. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245 (2000).

    Google Scholar 

  11. Akins, J. A., Luo, S.-N., Asimow, P. D. & Ahrens, T. J. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle. Geophys. Res. Lett. 31, L14612 (2004).

    Google Scholar 

  12. Ahrens, T. J., Holland, K. G. & Chen G. Q. Phase diagram of iron, revised-core temperatures. Geophys. Res. Lett. 29, 1150 (2002).

    Google Scholar 

  13. Anderson, O. L. The power balance at the core-mantle boundary. Phys. Earth Planet. Inter. 131, 1–17 (2002).

    Google Scholar 

  14. Stacey, F. D. Physics of the Earth. 3rd edn (Brookfield Press, Brisbane, Australia, 1992).

    Google Scholar 

  15. Buffett, B. A. The thermal state of Earth's core. Science 299, 1675–1676 (2003).

    Google Scholar 

  16. Alfe, D. Gillan, M. J. & Price, G. D. Thermodynamics from first principles: temperature and composition of the Earth's core. Min. Mag. 67, 113–123 (2003).

    Google Scholar 

  17. Nimmo, F. Core Dynamics: Energetics of the core, in Treatise on Geophys. (in the press).

  18. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999).

    Google Scholar 

  19. Stacey, F. D. & Loper, D. E. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. Inter. 161, 13–18 (2007).

    Google Scholar 

  20. Goncharov, A. F., Struzhkin, V. V. & Jacobsen, S. D. Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312, 1205–1208 (2006).

    Google Scholar 

  21. Lay, T., Williams, Q. & Garnero, E. J. The core-mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998).

    Google Scholar 

  22. Wang, Y. & Wen, L. Geometry and P and S velocity structure of the “African Anomaly”. J. Geophys. Res. 112, B05313 (2007).

    Google Scholar 

  23. Simmons, N. A., Forte, A. M. & Grand, S. P. Thermochemical structure and dynamics of the African superplume. Geophys. Res. Lett. 34, L02301 (2007).

    Google Scholar 

  24. Farnetani, C. G. Excess temperature of mantle plumes: the role of chemical stratification across D″. Geophys. Res. Lett. 24, 1583–1586 (1997).

    Google Scholar 

  25. Tackley, P. J. Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288, 2002–2007 (2000).

    Google Scholar 

  26. Montague, N. L. & Kellogg, L. H. Numerical models of a dense layer at the base of the mantle and implications for the geodynamics of D″. J. Geophys. Res. 105, 11101–11114 (2000).

    Google Scholar 

  27. Zhong, S. & Hager, B. H. Entrainment of a dense layer by thermal plumes. Geophys. J. Int. 154, 666–676 (2003).

    Google Scholar 

  28. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Google Scholar 

  29. Namiki, A. & Kurita, K. Heat transfer and interfacial temperature of two-layered convection: Implications for the D″-mantle coupling. Geophys. Res. Lett. 30, 1023 (2003).

    Google Scholar 

  30. Stacey, F. D. & Anderson, O. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001).

    Google Scholar 

  31. Buffett, B. A. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29, 1555 (2002).

    Google Scholar 

  32. Christensen, U. & Tilgner, A. Power requirements of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004).

    Google Scholar 

  33. Glatzmaier, G. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    Google Scholar 

  34. Gubbins, D., Alfe, D., Masters, G., Price, D. & Gillan, M. Gross thermodynamics of 2-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

    Google Scholar 

  35. Nakagawa, T. & Tackley, P. J. Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection. Geochem. Geophys. Geosyst. 6, Q08003 (2005).

    Google Scholar 

  36. Korenaga, J. Firm mantle plumes and the nature of the core-mantle boundary region. Earth Planet. Sci. Lett. 232, 29–37 (2005).

    Google Scholar 

  37. Davies, G. F. Mantle regulation of core cooling: A geodynamo without core radioactivity? Phys. Earth Planet. Inter. 160, 215–229 (2007).

    Google Scholar 

  38. Nimmo, F., Price, G. D., Brodholt, J. & Gubbins, D. The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 363–376 (2004).

    Google Scholar 

  39. Lister, J. R. & Buffett, B. A. Stratification of the outer core at the core-mantle boundary. Phys. Earth Planet. Int. 105, 5–19 (1998).

    Google Scholar 

  40. Helffrich, G. & Kaneshima, S. Seismological constraints on core composition from Fe-O-S liquid immiscibility. Science 306, 2239–2242 (2004).

    Google Scholar 

  41. Eaton, D. W. & Kendall, J.-M. Improving seismic resolution of outermost core structure by multichannel analysis and deconvolution of broadband SmKS phases. Phys. Earth Planet. Inter. 155, 104–119 (2006).

    Google Scholar 

  42. Tanaka, S. Seismic detectability of anomalous structure at the top of the Earth's outer core with broadband array analysis of SmKS phases. Phys. Earth Planet. Int. 141, 141–152 (2004).

    Google Scholar 

  43. Gubbins, D. Geomagnetic constraints on stratification at the top of Earth's core. Earth Planets Space 59, 661–664 (2007).

    Google Scholar 

  44. Davies, G. F. Cooling the core and mantle by plume and plate flows. Geophys. J. Int. 115, 132–146 (1993).

    Google Scholar 

  45. Mittelstaedt, E. & Tackley, P. Plume heat flow is much lower than cmb heat flow. Earth Planet. Sci. Lett. 241, 202–210 (2006).

    Google Scholar 

  46. Labrosse, S. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 199, 147–156 (2002).

    Google Scholar 

  47. Behn, M., Conrad, C. & Silver, P. Detection of upper mantle flow associated with the African superplume. Earth Planet. Sci. Lett. 224, 259–274 (2004).

    Google Scholar 

  48. Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res. 111, B04409 (2006).

    Google Scholar 

  49. Jellinek, A. M. & Manga, M. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760763 (2002).

    Google Scholar 

  50. Nakagawa, T. & Tackley, P. J. Effects of thermo-chemical mantle convection on the thermal evolution of the Earth's core. Earth Planet Sci. Lett. 220, 107–119 (2004).

    Google Scholar 

  51. Tan, E. & Gurnis, M. Compressible thermochemical convection and application to lower mantle structures. J. Geophys. Res. 112, B06304 (2007).

    Google Scholar 

  52. Nataf, H.-C. Seismic imaging of mantle plumes. Annu. Rev. Earth Planet. Sci. 28, 319–417 (2000).

    Google Scholar 

  53. Goes, S. Cammarano, F. & Hansen, U. Synthetic seismic signature of thermal plumes. Earth Planet. Sci. Lett. 218, 403–419 (2004).

    Google Scholar 

  54. Zhao, D. Seismic structure of hotspots and mantle plumes. Earth and Planet. Sci. Lett. 192, 251–265 (2001).

    Google Scholar 

  55. Montelli, R., Nolet, G., Dahlen, F. A., Masters, G. Engdahl, E. R. & Hung, S.-H. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).

    Google Scholar 

  56. Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hotspots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).

    Google Scholar 

  57. Romanowicz, B. & Gung, Y. C. Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. Science 296, 513–516 (2002).

    Google Scholar 

  58. Murakami, M., Hirose, K., Kawamura, K. Sato, N & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004).

    Google Scholar 

  59. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430, 445–448 (2004).

    Google Scholar 

  60. Hirose, K. Postperovskite phase transition and its geophysical implications. Rev. Geophys. 44, RG3001 (2006).

    Google Scholar 

  61. Stackhouse, S., Brodholt, J. P., Wookey, J., Kendall, J.-M. & Price, G. D. The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3 . Earth Planet. Sci. Lett. 230, 1–10 (2005).

    Google Scholar 

  62. Wentzcovitch, R. M., Tsuchiya, T. & Tsuchiya, J. MgSiO3 postperovskite at D″ conditions. Proc. Nat. Acad. Sci. USA 103, 543–546 (2006).

    Google Scholar 

  63. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. & Price, G. D. Efficacy of post-perovskite as an explanation for lowermost mantle seismic properties. Nature 438, 1004–1007 (2005).

    Google Scholar 

  64. Wysession, M. E. et al. in The Core-Mantle Boundary Region. (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 273–297 (AGU, Washington DC, 1998).

    Google Scholar 

  65. Lay, T. & Garnero, E. J. in Post-perovskite: The Last Phase Change. (eds Hirose, K., Brodholt, J., Lay, T. & Yuen D.) (AGU, in the press).

  66. Sidorin, I., Gurnis, M. & Helmberger, D. V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286, 1326–1331 (1999).

    Google Scholar 

  67. Spera, F. J., Yuen, D. A. & Giles, G. Tradeoffs in chemical and thermal variations in the post-perovskite phase transition: Mixed phase regions in the deep lower mantle? Phys. Earth Planet. Inter. 159, 234–246 (2006).

    Google Scholar 

  68. Hirose, K. Sinmyo, R., Sata, N. & Ohishi, Y. Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys. Res. Lett. 33, L01310 (2006).

    Google Scholar 

  69. Helmberger, D. V., Lay, T., Ni, S. & Gurnis, M. Deep mantle structure and the post-perovskite phase transition. Proc. Natl Acad. Sci. USA 102, 17257–17263 (2005).

    Google Scholar 

  70. Chambers, K. & Woodhouse, J. H. Transient D″ discontinuity revealed by seismic migration. Geophys. Res. Lett. 33, L17312 (2006).

    Google Scholar 

  71. Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D″ heat flux beneath the central Pacific. Science 314, 1272–1276 (2006).

    Google Scholar 

  72. Sun, D., Song, T.-R. A. & Helmberger, D. Complexity of D″ in the presence of slab-debris and phase changes. Geophys. Res. Lett. 33, L12S07 (2006).

    Google Scholar 

  73. Sun, D. Tan, E., Helmberger, D. & Gurnis, M. Seismological support for the metastable superplume model, sharp features, and phase changes within the lower mantle, Proc. Natl Acad. Sci. USA 104, 9151–9155 (2007).

    Google Scholar 

  74. van der Hilst, R. D., de Hoop, M. V., Wang, P., Shim, S.-H., Ma, P. & Tenorio, L. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region. Science 315, 1813–1817 (2007).

    Google Scholar 

  75. Braginski, S. I. & Roberts, P. H. Equations governing convection in Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995).

    Google Scholar 

  76. Hernlund, J. W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 434, 882–886 (2005).

    Google Scholar 

  77. Kaus, B. J. P., Connolly, J. A. D., Podladchikov, Y. Y. & Schmalholz, S. M. The effect of mineral phase transitions on sedimentary basic subsidence and uplift. Earth Planet. Sci. Lett. 233, 213–228 (2005).

    Google Scholar 

  78. Thomas, C., Garnero, E. J. & Lay, T. High-resolution imaging of lowermost mantle structure under the Cocos plate. J. Geophys. Res. 109, B08307 (2004).

  79. Thomas, C., Kendall, J.-M. & Lowman, J. Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet. Sci. Lett. 225, 105–113 (2004).

    Google Scholar 

  80. Flores, C. & Lay, T. The trouble with seeing double. Geophys. Res. Lett. 32, L24305 (2005).

    Google Scholar 

  81. Avants, M. Lay, T., Russell, S. A. & Garnero, E. J. Shear velocity variation within the D″ region beneath the central Pacific. J. Geophys. Res. 111, B05305 (2006).

    Google Scholar 

  82. Buffett, B. A. Bounds on heat flow beneath a double crossing of the perovskite-postperovskite phase transition. Geophys. Res. Lett. (submitted).

  83. Hernlund, J. W. & Labrosse, S. Geophysically consistent values of the perovskite to post-perovskite transition Clapeyron slope. Geophys. Res. Lett. 34, L05309 (2007).

    Google Scholar 

  84. Garnero, E. J., Revenaugh, J., Williams, Q., Lay, T. & Kellogg, L. H. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 319–334 (AGU, Washington DC, 1998).

    Google Scholar 

  85. Williams, Q. & Garnero E. J. Seismic evidence for partial melt at the base of the Earth's mantle. Science 273, 1528–1530 (1996).

    Google Scholar 

  86. Knittle, E. & Jeanloz, R. The Earth's core–mantle boundary: results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991).

    Google Scholar 

  87. Kanda, R. V. S. & Stevenson, D. J. Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett. 33, L02310 (2006).

    Google Scholar 

  88. Dobson, D. P. & Brodholt, J. P. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature 434, 371–373 (2005).

    Google Scholar 

  89. Buffett, B. A., Garnero, E. J. & Jeanloz, R. Sediments at the top of Earth's core. Science 290, 1338–1342 (2000).

    Google Scholar 

  90. Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).

    Google Scholar 

  91. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallising dense magma ocean at the base of the Earth's mantle. Nature (in the press).

  92. Thorne, M. S. & Garnero, E. J. Inferences on ultra-low velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 109, B08301 (2004).

    Google Scholar 

  93. Rost, S., Garnero, E. J., Williams, Q. & Manga, M. Seismic constraints on a possible plume root at the core-mantle boundary. Nature 435, 666–669 (2005).

    Google Scholar 

  94. Hernlund, J. & Tackley, Some dynamical consequences of partial melting in Earth's deep mantle. Phys. Earth Planet. Inter. (in the press).

  95. Stixrude, L. & Karki, B. Structure and freezing of MgSi03 liquid in Earth's lower mantle. Science 310, 297–299 (2005).

    Google Scholar 

  96. Boyet, M. & Carlson, R. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Google Scholar 

  97. Labrosse, S., Poirier, J.-P. & Le Mouel, J.-L. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001).

    Google Scholar 

  98. Conrad, C. P. & Hager, B. H. Thermal evolution of an Earth with strong subduction zones. Geophys. Res. Lett. 26, 3041–3044 (1999).

    Google Scholar 

  99. Korenaga, J., Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett. 30, 1437 (2003).

    Google Scholar 

  100. Labrosse, S. & Jaupart, C. The thermal evolution of the Earth: Long term and fluctuations. Earth Planet. Sci. Lett. (in the press).

Download references

Acknowledgements

We thank F. Nimmo and S. Labrosse for preprints, and F. Nimmo, Richard Holme and Bill McDonough for their comments on the manuscript. T.L.'s research on the deep Earth is supported by the NSF.

Author information

Authors and Affiliations

Authors

Contributions

T.L., J.H. and B.A.B. contributed equally to the writing, data analysis and ideas in this paper.

Corresponding author

Correspondence to Thorne Lay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lay, T., Hernlund, J. & Buffett, B. Core–mantle boundary heat flow. Nature Geosci 1, 25–32 (2008). https://doi.org/10.1038/ngeo.2007.44

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo.2007.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing