Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

Abstract

Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20–30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geologic and geomorphic context of the Gorkha earthquake sequence.
Figure 2: Swath profile cross-section (N18° E) of plausible structural geometries in relation to PT 2 and associated metrics of rock-uplift rate patterns.
Figure 3: Comparative slip distribution and misfit for different models.
Figure 4: Slip distribution and misfit for preferred model.

Similar content being viewed by others

References

  1. Hodges, K., Wobus, C. W., Ruhl, K., Schildgen, T. & Whipple, K. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett. 220, 379–389 (2004).

    Article  Google Scholar 

  2. Wobus, C. W., Whipple, K. X. & Hodges, K. V. Neotectonics of the central Nepalese Himalaya: constraints from geomorphology, detrital Ar-40/Ar-39 thermochronology, and thermal modeling. Tectonics 25, TC4011 (2006).

    Article  Google Scholar 

  3. Galetzka, J. et al. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349, 1091–1095 (2015).

    Article  Google Scholar 

  4. Lindsey, E. O. et al. Line-of-sight displacement from ALOS-2 interferometry: M w 7.8 Gorkha Earthquake and M w 7.3 aftershock. Geophys. Res. Lett. 42, 6655–6661 (2015).

    Article  Google Scholar 

  5. Wang, K. & Fialko, Y. Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys. Res. Lett. 42, 7452–7458 (2015).

    Article  Google Scholar 

  6. Elliott, J. R. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 9, 174–180 (2016).

    Article  Google Scholar 

  7. DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20, 487–509 (2001).

    Article  Google Scholar 

  8. Khanal, S. & Robinson, D. M. Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, central Nepal. Int. J. Earth Sci. 102, 1871–1891 (2013).

    Article  Google Scholar 

  9. Bollinger, L., Henry, P. & Avouac, J. P. Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71 (2006).

    Article  Google Scholar 

  10. Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. 115, B06407 (2010).

    Google Scholar 

  11. Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lavé, J. & Massot, J. P. Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995).

    Article  Google Scholar 

  12. Seeber, L. & Gornitz, V. River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics 92, 335–367 (1983).

    Article  Google Scholar 

  13. Upreti, B. N. & LeFort, P. in Himalaya and Tibet: Mountain Roots to Mountain Tops (eds Macfarlane, A., Sorkhabi, R. B. & Quade, J.) 225–238 (Geological Society of America Special Paper 328, 1999).

    Google Scholar 

  14. Wobus, C., Heimsath, A., Whipple, K. & Hodges, K. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005).

    Article  Google Scholar 

  15. Lave, J. & Avouac, J.-P. Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal. J. Geophys. Res. 105, 5735–5770 (2000).

    Article  Google Scholar 

  16. Avouac, J. P., Meng, L. S., Wei, S. J., Wang, T. & Ampuero, J. P. Lower edge of locked Main Himalayan thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci. 8, 708–711 (2015).

    Article  Google Scholar 

  17. Feng, W. et al. Source characteristics of the 2015 MW 7.8 Gorkha (Nepal) earthquake and its MW 7.2 aftershock from space geodesy. Tectonophysics http://dx.doi.org/10.1016/j.tecto.2016.02.029 (2016).

  18. Duputel, Z. et al. The 2015 Gorkha earthquake: a large event illuminating the Main Himalayan Thrust fault. Geophys. Res. Lett. 43, 2517–2525 (2016).

    Article  Google Scholar 

  19. Fan, W. Y. & Shearer, P. M. Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophys. Res. Lett. 42, 5744–5752 (2015).

    Article  Google Scholar 

  20. Ader, T. et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res. 117, B04403 (2012).

    Article  Google Scholar 

  21. Jackson, M. & Bilham, R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J. Geophys. Res. 99, 13,897–13,912 (1994).

    Article  Google Scholar 

  22. Grandin, R. et al. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology 40, 1059–1062 (2012).

    Article  Google Scholar 

  23. Lyon-Caen, H. & Molnar, P. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res. 88, 8171–8191 (1983).

    Article  Google Scholar 

  24. Nabelek, J. et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  25. Schulte-Pelkum, V. et al. Imaging the Indian subcontinent beneath the Himalaya. Nature 435, 1222–1225 (2005).

    Article  Google Scholar 

  26. Wobus, C. W., Hodges, K. V. & Whipple, K. X. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31, 861–864 (2003).

    Article  Google Scholar 

  27. Huntington, K. W., Blythe, A. E. & Hodges, K. V. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett. 252, 107–118 (2006).

    Article  Google Scholar 

  28. Whipp, D. M. et al. Plio-Quaternary exhumation history of the central Nepalese Himalaya: 2. Thermokinematic and thermochronometer age prediction model. Tectonics 26, TC3003 (2007).

    Article  Google Scholar 

  29. Godard, V. & Burbank, D. W. Mechanical analysis of controls on strain partitioning in the Himalayas of central Nepal. J. Geophys. Res. 116, B10402 (2011).

    Article  Google Scholar 

  30. Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., Rai, S. S. & Ashish Characterizing the main Himalayan thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth Planet. Sci. Lett. 367, 15–27 (2013).

    Article  Google Scholar 

  31. Patel, R. C., Adlakha, V., Lal, N., Singh, P. & Kumar, Y. Spatiotemporal variation in exhumation of the crystal lines in the NW-Himalaya, India: constraints from fission track dating analysis. Tectonophysics 504, 1–13 (2011).

    Article  Google Scholar 

  32. Kayal, J. R. Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics 339, 331–351 (2001).

    Article  Google Scholar 

  33. Vannay, J.-C. et al. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23, TC1014 (2004).

    Article  Google Scholar 

  34. Mitra, S., Wanchoo, S. & Priestley, K. F. Source Parameters of the 1 May 2013 m(b) 5.7 Kishtwar Earthquake: implications for Seismic Hazards. Bull. Seismol. Soc. Am. 104, 1013–1019 (2014).

    Article  Google Scholar 

  35. Mugnier, J. L. et al. Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Sci. Rev. 127, 30–47 (2013).

    Article  Google Scholar 

  36. Kumar, N., Arora, B. R., Mukhopadhyay, S. & Yadav, D. K. Seismogenesis of clustered seismicity beneath the Kangra-Chamba sector of northwest Himalaya: constraints from 3D local earthquake tomography. J. Asian Earth Sci. 62, 638–646 (2013).

    Article  Google Scholar 

  37. Kumar, N., Paul, A., Mahajan, A. K., Yadav, D. K. & Bora, C. The M w 5.0 Kharsali, Garhwal Himalayan earthquake of 23 July 2007: source characterization and tectonic implications. Curr. Sci. 102, 1674–1682 (2012).

    Google Scholar 

  38. Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005, M w 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 249, 514–528 (2006).

    Article  Google Scholar 

  39. Hodges, K., Hurtado, J. M. & Whipple, K. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectoncis 20, 799–809 (2001).

    Article  Google Scholar 

  40. McDermott, J. A., Hodges, K. V., Whipple, K. X., Van Soest, M. C. & Hurtado, J. M. Evidence for pleistocene low-angle normal faulting in the Annapurna-Dhaulagiri Region, Nepal. J. Geol. 123, 133–151 (2015).

    Article  Google Scholar 

  41. McDermott, J. A., Whipple, K. X., Hodges, K. V. & van Soest, M. C. Evidence for Plio-Pleistocene north-south extension at the southern margin of the Tibetan Plateau, Nyalam region. Tectonics 32, 317–333 (2013).

    Article  Google Scholar 

  42. Hurtado, J. M., Hodges, K. V. & Whipple, K. X. Neotectonics of the Thakkhola graben and implications for recent activity on the South Tibetan fault system in the central Nepal Himalaya. Geol. Soc. Am. Bull. 113, 222–240 (2001).

    Article  Google Scholar 

  43. Cannon, J. M. & Murphy, M. A. Active lower crustal deformation and Himalayan seismic hazard revealed by stream channels and regional geology. Tectonophysics 633, 34–42 (2014).

    Article  Google Scholar 

  44. Murphy, M. A. et al. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat. Geosci. 7, 38–42 (2014).

    Article  Google Scholar 

  45. Thiede, R. C. & Ehlers, T. A. Large spatial and temporal variations in Himalayan denudation. Earth Planet. Sci. Lett. 371, 278–293 (2013).

    Article  Google Scholar 

  46. Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28,957–928,981 (1999).

    Article  Google Scholar 

  47. Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2, 97–104 (2009).

    Article  Google Scholar 

  48. Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003).

    Article  Google Scholar 

  49. Godard, V. et al. Dominance of tectonics over climate in Himalayan denudation. Geology 42, 243–246 (2014).

    Article  Google Scholar 

  50. Yag, N. et al. Interferometric processing of Sentinel-1 TOPS data. IEEE Trans. Geosci. Remote Sensing 54, 2220–2234 (2016).

    Article  Google Scholar 

  51. Prats-Iraola, P., Scheiber, R., Marotti, L., Wollstadt, S. & Reigber, A. TOPS Interferometry With TerraSAR-X. IEEE Trans. Geosci. Remote Sensing 50, 3179–3188 (2012).

    Article  Google Scholar 

  52. Hanssen, R. F. Radar Interferometry, Data Interpretation and Error Analysis (Kluwer Academic Publishers, 2001).

    Book  Google Scholar 

  53. Costantini, M. & Rosen, P. A. Proc. IEEE 1999 Int. Geosci. Remote Sensing Symp. (IGARSS) 267–269 (1999).

    Google Scholar 

  54. Shirzaei, M. & Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophys. Res. Lett. 39, L01305 (2012).

    Article  Google Scholar 

  55. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  56. Shirzaei, M. & Walter, T. R. Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data. J. Geophys. Res. 114, B10401 (2009).

    Article  Google Scholar 

  57. Stark, P. B. & Parker, R. L. Bounded-variable least-squares—an algorithm and applications. Comput. Stat. 10, 129–141 (1995).

    Google Scholar 

  58. Marshall, J. & Bethel, J. basic concepts of L1 norm minimization for surveying applications. J. Surv. Eng. 122, 168–179 (1996).

    Article  Google Scholar 

  59. Segall, P. & Harris, R. The earthquake deformation cycle on the San Andreas fault near Parkfield, California. J. Geophys. Res. 92, 10511–10525 (1987).

    Article  Google Scholar 

  60. Koch, K. R. & Kusche, J. Regularization of geopotential determination from satellite data by variance components. J. Geod. 76, 259–268 (2002).

    Article  Google Scholar 

  61. Shirzaei, M. & Bürgmann, R. Time-dependent model of creep on Hayward fault inferred from joint inversion of 18 years InSAR time series and surface creep data. J. Geophys. Res. 118, 1733–1746 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Thiede for sharing his compilation of thermochronometric data in the Himalaya, J.-P. Avouac for providing pre-event microseismic hypocentres in Nepal (included in Supplementary Information), E. Lindsey and colleagues for making ALOS-2 displacements available at http://topex.ucsd.edu/nepal, and M. Zoldak for assistance with GIS data management. Sentinel-1A interferograms used in our analysis are derived from Copernicus data, subject to ESA use and distribution conditions. M. S. is supported by National Science Foundation grant EAR-1357079.

Author information

Authors and Affiliations

Authors

Contributions

K.X.W. initiated the analysis and prepared context figures. M.S. performed the inversions and prepared figures displaying results. All authors contributed to interpretation and writing.

Corresponding author

Correspondence to Kelin X. Whipple.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whipple, K., Shirzaei, M., Hodges, K. et al. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake. Nature Geosci 9, 711–716 (2016). https://doi.org/10.1038/ngeo2797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing