Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18

Abstract

Little is known about inherited susceptibility to spontaneous germ cells tumours in humans or other species. The Ter mutation in laboratory mice is novel in that it acts codominantly to reduce germ cell numbers on many inbred strain backgrounds and to enhance dramatically inherited predisposition to spontaneous testicular teratocarcinomas in strain 129 inbred mice. We have adopted a PCR–based, DMA pooling method for mice with ‘extreme’ phenotypes (small testes versus normal–sized testes) to identify a candidate linkage to the Ter locus. Two independent mapping approaches confirmed this evidence for Ter linkage near D18Mit62 on mouse chromosome 18, and suggest a possible human homologue on chromosome 5q.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stevens, L.C. & Hummel, K.P. A description of spontaneous congenital testicular teratomas in strain 129 mice. J. natn. Cancer Inst. 18, 719–747 (1957).

    CAS  Google Scholar 

  2. Silverberg, E. Cancer in young adults (ages 15–34). C.A. Cancer J. Clin. 32, 32–43 (1982).

    Article  CAS  Google Scholar 

  3. Waterhouse, J.A.H. Epidemiology of testicular tumors. J.R. Soc. Med. 78 (suppl 6), 3–7 (1985).

    PubMed  PubMed Central  Google Scholar 

  4. Champlin, H.W. Similar tumors of testis occurring in identical twins. J. Am. med. Assoc. 95, 96 (1980).

    Article  Google Scholar 

  5. Lapes, M. lozzi, L., Ziegenfus, W.D., Antoniades, K. & Vivacqua, R. Familial testicular cancer in a father (bilateral seminoma-embryonal cell carcinoma) and son (teratocarcinoma). Cancer 39, 2317–2320 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Douketis, J. & Burkes, R.L. Familial testicular cancer: what role does heredity play? Can. Fam. Physician 39, 1640–1641 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stevens, L.C. Origin of testicular teratomas from primordial germ cells in mice. J. natn Cancer Inst. 38, 549–552 (1967).

    CAS  Google Scholar 

  8. Stevens, L.C. & Mackensen, J.A. Genetic and environmental influences on teratocarcinogenesis in mice. J. natn. Cancer Inst. 27, 443–453 (1961).

    Google Scholar 

  9. Kleinsmith, L.J. & Pierce, G.B. Multipotentiality of single embryonal carcinoma cells. Cancer 24, 1544–1552 (1964).

    CAS  Google Scholar 

  10. Stevens, L.C. Experimental production of testlcular teratomas in mice of strain 129, A/He, and their F1 hybrids. J. natn. Cancer Inst. 44, 923–929 (1970).

    CAS  Google Scholar 

  11. Stevens, L.C. Experimental production of testicular teratomas in mice. Proc. natn. Acad. Sci. U.S.A. 52, 654–661 (1964).

    Article  CAS  Google Scholar 

  12. Stevens, L.C. Testicular teratomas in fetal mice. J. natn. Cancer Inst. 28, 247–267 (1962).

    CAS  Google Scholar 

  13. Stevens, L.C. Embryology of testicular teratomas in strain 129 mice. J. natn. Cancer Inst. 23, 1249–1295 (1959).

    CAS  Google Scholar 

  14. Stewart, T.A. & Mintz, B. Recurrent germ-line transmission of the teratocarcinoma genome from the Mett-1 culture line to progeny in vivo. J. exp Zool. 224, 465–469 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Stevens, L.C. A new inbred subline of mice (129/terSv) with a high incidence of spontaneous congenital testicular teratomas. J. natn. Cancer Inst. 50, 235–242 (1973).

    Article  CAS  Google Scholar 

  16. Stevens, L.C. & Little, C.C. Spontaneous testicular teratomas in an inbred strain of mice. Proc. natn. Acad. Sci. U.S.A. 40, 1080–1087 (1954).

    Article  CAS  Google Scholar 

  17. Noguchi, T. & Noguchi, M. A recessive mutation (ter) causing germ cell deficiency and a high incidence of congenital testlcular teratomas in 129/Sv-ter mice. J. natn. Cancer Inst. 75, 385–392 (1985).

    CAS  Google Scholar 

  18. Rivers, E.N. & Hamilton, D.W. Morphologic analysis of spontaneous teratocarcinogenesis in developing testes of strain 129/Sv-ter mice. Am J. Pathol 124, 263–280 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Skakkebaek, N., Berthelsen, J. & Muller, J. Histopathology of human testicular tumours: Carcinoma-in-situ germ cells and invasive growth of different types of germ cell tumours. INSERM 123, 445–462 (1984).

    Google Scholar 

  20. Noguchi, T. & Stevens, L.C. Primordial germ cell proliferation in fetal testes in mouse strains with high and low incidences of congenital testicular teratomas. J. natn. Cancer Inst. 69, 907–913 (1982).

    CAS  Google Scholar 

  21. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Harvey, M., McArthur, M.J., Montgomery Jr, C.A., Bradley, A. & Donehower, L.A. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 7, 938–943 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, B.A. & Rowe, L. A mouse linkage testing stock possessing multiple copies of the endogenous ecotropic murine leukemia virus genome. Genomics 5, 221–232 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Michelmore, R.W., Paran, I. & Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. natn. Acad. Sci. U.S.A. 88, 9828–9832 (1991).

    Article  CAS  Google Scholar 

  25. Lander, E.S. & Botstein, D. Homozygosity mapping: A way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsui, Y., Zsebo, K. & Hogan, B.L.M. Derivation of pluripotent germ cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Resnick, J.K., Bixier, L.S., Cheng, L. & Donovan, P.J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Copeland, N.G. et al. A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Peltomaki, P., Halme, S.A. & & de la Chapelle, A. Human testicular cancer: changes in autosomal dosage. Cancer Genet Cytogenet. 48, 1–12 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Chaganti, R.S.K., Rodriguez, E. & Basl, G.J. Cytogenetics of male germ cell tumors. Urol. Clin. J. Amer. 20, 55–66 (1993).

    CAS  Google Scholar 

  33. Mintz, B. & Russell, E.S. Gene-induced embryological modifications of primordial germ cells in the mouse. J. exp Zool. 134, 207–237 (1957).

    Article  CAS  PubMed  Google Scholar 

  34. Reith, A.D. & Bernstein, A. Molecular biology of the W and Steel loci. In Genome Analysis 3: Genes and phenotypes (eds Davies, K.E & Tilghman. S.M.) 105–133 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  35. Kitamura, Y., Kasugai, T., Nakayama, H., Nomura, S. & Nishimune, Y. Roles of c-kit and its ligand for germ cell differentiation. In Biology of the Germ Line (eds H. Mohri, M. Takahashi & C. Tachi) 51–62 (Japan Scientific Societies Press, Karger, New York, 1993).

    Google Scholar 

  36. Pellas, T.C. et al. Germ-cell deficient (gcd), an insertional mutation manifested as infertility in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 88, 8787–8791 (1991).

    Article  CAS  Google Scholar 

  37. Matsui, Y., Zsebo, K. & Hogan, B. Embryonic expression of a haemopoietic growth factor encoded by the Steel locus and the ligand for c-kit. Nature 347, 667–669 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Motro, B., Van Der Kooy, D., Rossant, J., Reith, A. & Bernstein, A. Contiguous pattern of c-kit and steel expression: analysis of mutations at the W and SI loci. Development 113, 1207–1221 (1991).

    CAS  PubMed  Google Scholar 

  39. Orr-Urtreger, A. et al. Developmental expression of c-kit, a proto-oncogene encoded at the W locus of the mice. Development 109, 911–923 (1990).

    CAS  PubMed  Google Scholar 

  40. Manova, K. & Bachvarova, R.F. Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Devel. Biol. 146, 312–324 (1991).

    Article  CAS  Google Scholar 

  41. Oliver, R.T.D., Atrophy, hormones, genes and viruses in aetiology of germ cell tumors. Cancer Surv. 9, 263–286 (1990).

    CAS  PubMed  Google Scholar 

  42. Korsmeyer, S.J. Bcl-2: a repressor of lymphocyte death. Immunol. Today 13, 285–288 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Nadeau, J.H. & Phillips, S.J. The putative oncogene Pim-1 In the mouse: Its linkage and variation among t-haplotypes. Genetics 117, 533–541 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hebert, J.M., Basilico, C., Goldfarb, M., Haub, O. & Martin, G.R. Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression pattern during embryogenesis. Dev. Biol. 138, 454–463 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Heery, D.M., Gannon, F. & Powell, R. A simple method for subclonlng DNA fragments from gel slices. Trends Genet. 6, 173 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Ericson, M.L. Quick DNA recovery from agarose gels by ultracentrifuge run. Trends Genet. 6, 278 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Sukhatme, V.P. et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53, 37–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asada, Y., Varnum, D., Frankel, W. et al. A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18. Nat Genet 6, 363–368 (1994). https://doi.org/10.1038/ng0494-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0494-363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing