Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci

Abstract

Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10−14) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10−8). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LOXL1 p.Tyr407Phe regulates ECM synthesis and improves cellular adhesion.
Figure 2: Manhattan plot of the results from the GWAS discovery plus replication meta-analysis comprising 13,620 XFS cases and 109,837 controls.
Figure 3: Expression of POMP protein in ocular tissues of normal human donor eyes and donor eyes with XFS, as determined by immunoblotting and immunohistochemistry.
Figure 4: Expression of TMEM136 protein in the ocular tissues of normal human donor eyes and donor eyes with XFS, as determined by immunoblotting and immunohistochemistry.

Similar content being viewed by others

References

  1. Vesti, E. & Kivelä, T. Exfoliation syndrome and exfoliation glaucoma. Prog. Retin. Eye Res. 19, 345–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Ritch, R. & Schlötzer-Schrehardt, U. Exfoliation syndrome. Surv. Ophthalmol. 45, 265–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Leske, M.C. et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch. Ophthalmol. 121, 48–56 (2003).

    Article  PubMed  Google Scholar 

  4. Ritch, R., Schlötzer-Schrehardt, U. & Konstas, A.G. Why is glaucoma associated with exfoliation syndrome? Prog. Retin. Eye Res. 22, 253–275 (2003).

    Article  PubMed  Google Scholar 

  5. Olawoye, O.O. et al. Exfoliation syndrome in Nigeria. Middle East Afr. J. Ophthalmol. 19, 402–405 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kivelä, T. Ocular pseudoexfoliation syndrome and life span: act 2. EBioMedicine 2, 640–641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ritch, R. Ocular and systemic manifestations of exfoliation syndrome. J. Glaucoma 23 (Suppl. 1), S1–S8 (2014).

    Article  PubMed  Google Scholar 

  8. Ritch, R. Exfoliation syndrome—the most common identifiable cause of open-angle glaucoma. J. Glaucoma 3, 176–177 (1994).

    CAS  PubMed  Google Scholar 

  9. Allingham, R.R. et al. Pseudoexfoliation syndrome in Icelandic families. Br. J. Ophthalmol. 85, 702–707 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orr, A.C. et al. Exfoliation syndrome: clinical and genetic features. Ophthalmic Genet. 22, 171–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Thorleifsson, G. et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317, 1397–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, S.E. et al. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Mol. Vis. 16, 705–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiggs, J.L. & Pasquale, L.R. Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome. J. Glaucoma 23 (Suppl. 1), S62–S63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aung, T. et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat. Genet. 47, 387–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Al Olama, A.A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, J.Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ehret, G.B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hauser, M.A. et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum. Mol. Genet. 24, 6552–6563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, H. et al. Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Mol. Vis. 16, 167–177 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Fan, B.J. et al. LOXL1 promoter haplotypes are associated with exfoliation syndrome in a U.S. Caucasian population. Invest. Ophthalmol. Vis. Sci. 52, 2372–2378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozaki, M. et al. Association of LOXL1 gene polymorphisms with pseudoexfoliation in the Japanese. Invest. Ophthalmol. Vis. Sci. 49, 3976–3980 (2008).

    Article  PubMed  Google Scholar 

  25. Tanito, M. et al. LOXL1 variants in elderly Japanese patients with exfoliation syndrome/glaucoma, primary open-angle glaucoma, normal tension glaucoma, and cataract. Mol. Vis. 14, 1898–1905 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pasutto, F. et al. Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Invest. Ophthalmol. Vis. Sci. 49, 1459–1463 (2008).

    Article  PubMed  Google Scholar 

  27. Mori, K. et al. LOXL1 genetic polymorphisms are associated with exfoliation glaucoma in the Japanese population. Mol. Vis. 14, 1037–1040 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakano, M. et al. Novel common variants and susceptible haplotype for exfoliation glaucoma specific to Asian population. Sci. Rep. 4, 5340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flannick, J. et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 46, 357–363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Majithia, A.R. et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl. Acad. Sci. USA 111, 13127–13132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Majithia, A.R. et al. Prospective functional classification of all possible missense variants in PPARG. Nat. Genet. 48, 1570–1575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Do, R. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 518, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, Y. et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49, 186–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raychaudhuri, S. et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat. Genet. 43, 1232–1236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seddon, J.M. et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat. Genet. 45, 1366–1370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fritsche, L.G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Schlötzer-Schrehardt, U., von der Mark, K., Sakai, L.Y. & Naumann, G.O. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome. Invest. Ophthalmol. Vis. Sci. 38, 970–984 (1997).

    PubMed  Google Scholar 

  39. Schlötzer-Schrehardt, U., Zenkel, M., Küchle, M., Sakai, L.Y. & Naumann, G.O. Role of transforming growth factor-β1 and its latent form binding protein in pseudoexfoliation syndrome. Exp. Eye Res. 73, 765–780 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Schlötzer-Schrehardt, U. Molecular pathology of pseudoexfoliation syndrome/glaucoma—new insights from LOXL1 gene associations. Exp. Eye Res. 88, 776–785 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. Lucero, H.A. & Kagan, H.M. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell. Mol. Life Sci. 63, 2304–2316 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X. et al. Elastic fiber homeostasis requires lysyl oxidase–like 1 protein. Nat. Genet. 36, 178–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Atienza, J.M. et al. Dynamic and label-free cell-based assays using the real-time cell electronic sensing system. Assay Drug Dev. Technol. 4, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Solly, K., Wang, X., Xu, X., Strulovici, B. & Zheng, W. Application of real-time cell electronic sensing (RT–CES) technology to cell-based assays. Assay Drug Dev. Technol. 2, 363–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Urcan, E. et al. Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent. Mater. 26, 51–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  48. Gaulton, K.J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Y. et al. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork. Mol. Vis. 17, 885–893 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner, A.H. et al. Exon-level expression profiling of ocular tissues. Exp. Eye Res. 111, 105–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Wistow, G. et al. NEIBank: genomics and bioinformatics resources for vision research. Mol. Vis. 14, 1327–1337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bowes Rickman, C. et al. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE. Invest. Ophthalmol. Vis. Sci. 47, 2305–2316 (2006).

    Article  PubMed  Google Scholar 

  54. Springelkamp, H. et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 24, 2689–2699 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, P.H., O'Dushlaine, C., Thomas, B. & Purcell, S.M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barker, H.E., Cox, T.R. & Erler, J.T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Braunsmann, C. et al. Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest. Ophthalmol. Vis. Sci. 53, 2960–2967 (2012).

    Article  PubMed  Google Scholar 

  61. Schlötzer-Schrehardt, U.M., Dörfler, S. & Naumann, G.O. Corneal endothelial involvement in pseudoexfoliation syndrome. Arch. Ophthalmol. 111, 666–674 (1993).

    Article  PubMed  Google Scholar 

  62. Sauna, Z.E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Shabalina, S.A., Spiridonov, N.A. & Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 41, 2073–2094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hunt, R.C., Simhadri, V.L., Iandoli, M., Sauna, Z.E. & Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 30, 308–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zenkel, M., Kruse, F.E., Naumann, G.O. & Schlötzer-Schrehardt, U. Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma. Invest. Ophthalmol. Vis. Sci. 48, 5558–5566 (2007).

    Article  PubMed  Google Scholar 

  66. Korolchuk, V.I., Menzies, F.M. & Rubinsztein, D.C. Mechanisms of cross-talk between the ubiquitin–proteasome and autophagy–lysosome systems. FEBS Lett. 584, 1393–1398 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836–841 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Want, A. et al. Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients. PLoS One 11, e0157404 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Schlötzer-Schrehardt, U. & Naumann, G.O. Ocular and systemic pseudoexfoliation syndrome. Am. J. Ophthalmol. 141, 921–937 (2006).

    Article  PubMed  Google Scholar 

  70. Kivelä, T., Hietanen, J. & Uusitalo, M. Autopsy analysis of clinically unilateral exfoliation syndrome. Invest. Ophthalmol. Vis. Sci. 38, 2008–2015 (1997).

    PubMed  Google Scholar 

  71. Guan, W. et al. Genome-wide association study of plasma N6 polyunsaturated fatty acids within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circ Cardiovasc Genet 7, 321–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cohen, J.C., Boerwinkle, E., Mosley, T.H. Jr. & Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Nioi, P. et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N. Engl. J. Med. 374, 2131–2141 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Barrett, J.C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, C.A. et al. Data quality control in genetic case–control association studies. Nat. Protoc. 5, 1564–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mells, G.F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43, 329–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Verhoeven, V.J. et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Genet. 45, 314–318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bronson, P.G. et al. Common variants at PVT1, ATG13AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency. Nat. Genet. 48, 1425–1429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kooner, J.S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blake, J.A., Bult, C.J., Eppig, J.T., Kadin, J.A. & Richardson, J.E. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res. 42, D810–D817 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Foo, J.N. et al. Analysis of non-synonymous-coding variants of Parkinson's disease–related pathogenic and susceptibility genes in East Asian populations. Hum. Mol. Genet. 23, 3891–3897 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Cheng, T.H. et al. Five endometrial cancer risk loci identified through genome-wide association analysis. Nat. Genet. 48, 667–674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Browning, B.L. & Browning, S.R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by the Biomedical Research Council, Agency for Science, Technology and Research, Singapore (to C.C.K.), by the Glaucoma Foundation of New York (to C.C.K.), by grants from the National Medical Research Council, Singapore NMRC/TCR/008-SERI/2013 and NMRC/STAR/0023/2014 to T.A. and NMRC/CBRG/0032/2013 to E.N.V.), by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF-E23) from Germany to F.P. and U.S.-S., and by grants from the US National Institutes of Health: UM1 CA186107, R01 CA49449, R01 AR056291, R01 CA131332, P01 CA055075, R01 CA134958 and R01 EY015473 to J.L.W. For XFS cases in the US GWAS data set, genotyping services were provided through a grant to J.L.W. (HG008597) by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the US National Institutes of Health to The Johns Hopkins University, contract HHSN268201200008I. The Beijing, China, collection was supported by funding from the National Natural Science Foundation of China (81030016 and 81570837), the Program of Beijing Scholars (2013), the National Major Scientific and Technological Special Project for Significant New Drugs Development (2011ZX09302-007-05) and Leading Talents–High-Level Talents of the Health System of Beijing (2009-1-05) to N. Wang. We dedicate this article to the ophthalmologist Eva Forsman from Finland who passed away after diagnosing all of the exfoliation syndrome cases from Finland.

Author information

Authors and Affiliations

Authors

Contributions

C.C.K., F.P., J.L.W., T.A. and M.O. jointly conceived the project. M.C.L., U.S.-S., M.Z., D.B., Y.F.C., X.Y.N., A.W.O.C., E.N.V., S.R.G., A.S.Y.C. and Y.C. conducted functional biological experiments. G.T., R.P.I., K.P.B., Z.L., G.P., S.S., J.N.C.B., S.U., Z.Y., L. Huang, J.N.F., R.Q.S., K.S.S., P. Kraft, I.J., A.G., M.A.P.-V., A.M.H., E.N.V., C.-Y.C. and J.L.H. conducted statistical analysis. S. Raychaudhuri provided critical input on statistical analysis. Z.X., S.Q.M., H.M.S., X.Y.C., S.Q.P. and K.K.H. conducted genotyping and sequencing experiments. T.A., M.O., T.M., A.H., S.E.W., Y.S.A., A.C.O., S. Nakano, K. Mori, A.P.C., K.H., S. Manabe, S. Kazama, T. Zarnowski, K.I., M. Irkec, M.C.-P., K. Sugiyama, P. Schlottmann, S.F.L., H.L., Y.N., M.B., K.H.P., S.C.C., K.Y., J.C.Z., J.B.J., R.S.K., S.A.P., N. Kalpana, R.G., L.V., T.D., D.P.E., L.d.J.M., M.P., S. Moghimi, R.I., D.B.-H., P. Kappelgaard, B. Wirostko, S.T., D.G., K.B., W.L.G., X.C., J.S., H.J., L.J., C.Q., H.Z., X.L., B.Z., Y.-X.W., L.X., S.L., P.R., G.C., S.T., G.M., N. Weisschuh, U.H., U.-C.W.-L., C.M., P. Founti, A. Chatzikyriakidou, T.P., E.A., A.L., R.S., N.P., V.S., R.V., C. Shivkumar, N. Kobakhidze, M.R.K., A.N.B., S.Y., A.I., H.N., N. Khatibi, A.F., C.L., L.D., T.R., P. Frezzotti, D.P., E.S., P. Manunta, Y.M., K. Miyata, T.H., E.C., S.I., A.Y., M.Y., Y.K., T.O., T. Sakurai, T. Sugimoto, H.C., M.A., M. Inatani, M.M., N.G., F.M., N.Y., Y.I., M.U., C. Sotozono, J.W.J., M.S., K.H.P., J.A., M.C.-A., S.M.E., A. Rafei, V.H.K.Y., M.I.K., O.O.O., A.O.A., I.U., A.O., N.K.-A., C.T., Y.S., W.S., S.O., N.J.U., I.A., H.A., F.A., E.K.-J., U.L., I.L., V.C., R.P.G., G.S.M., S. Roy, E.D., E. Silke, A. Rao, P. Sahay, P. Fornero, O.C., D.S., T. Zompa, R.A.M., E. Souzeau, P. Mitchell, J.J.W., A.W.H., M.C., J.G.C., S.Y.A., E.L.A., A.E., V.V., G.K., R.F., S.A.A.-O., O.O., L.A.A., B.C., R.H., S.-L.H., F.A.E.-D., R.G.-S., F.M.-T., A. Salas, K.P., L. Hansapinyo, B. Wanichwecharugruang, N.K., A. Sakuntabhai, H.X.N., G.T.T.N., T.V.N., W.Z., A.B., D.S.K., M.L.H., S.D., S. Herms, S. Heegaard, M.M.N., S. Moebus, R.M.R., A.Z., T.R.C., M.R., L.A., M.G., H.G.-I., P.P.R.-C., L.F.-V.C., C.O., N.T., E.A., B.B., D.A., B.K., M.R.W., A.L.C., Y.L., P.C., L. Herndon, R.W.K., J.K., K.C., C.J.C., A. Crandall, L.M.Z., T.Y.W., M.N., S. Kinoshita, A.I.d.H., E.V., J.H.F., R.K.L., A.J.S., B.J.S., N. Wang, D.C., R.Q., T. Kivela, A. Reis, F.E.K., R.N.W., L.R.P., F.J., R.R.A., R.R., T. Kubota, S. Micheal, F.T., J.E.C., K.A.-A., M.H., J.H.K., S. Nelson, D.M., P. Sundaresan, M.D. and K.T. were involved in sample collection, phenotyping and processing. U.T., G.T. and K. Stefansson supervised, conducted and provided analysis of deCODE data. The manuscript was written by C.C.K., with critical input from T.A., T.K., U.T., J.L.W., L.R.P. and F.P. All co-authors approved the manuscript for publication.

Corresponding authors

Correspondence to Tin Aung, Janey L Wiggs, Francesca Pasutto or Chiea Chuen Khor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23, Supplementary Tables 1–5, 8–13 and 15–17, and Supplementary Note. (PDF 6393 kb)

Supplementary Table 6

Genome-wide significant (P < 5 × 10−8) SNPs emerging from the LOXL1 deep sequencing effort after fixed-effects meta-analysis is performed. (XLSX 14 kb)

Supplementary Table 7

Details of all 63 amino acid substitutions (excluding the well-known rs3825942[G>A] for p.Gly153Asp and rs1048661[T>G] for p.Leu141Arg) that were detected from the deep resequencing of LOXL1 in 5,566 exfoliation syndrome cases and 6,279 controls from nine countries. (XLSX 14 kb)

Supplementary Table 14

LD regions around each of the seven genome-wide significant loci for exfoliation syndrome. (XLSX 13 kb)

Supplementary Data 1

Phased LOXL1 haplotypes from deep resequencing data. (XLSX 23 kb)

Supplementary Data 2

Summary statistics for the genome-wide association study. (ZIP 34845 kb)

Supplementary Data 3

INRICH pathway analysis. (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aung, T., Ozaki, M., Lee, M. et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet 49, 993–1004 (2017). https://doi.org/10.1038/ng.3875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3875

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research