Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Detection and interpretation of shared genetic influences on 42 human traits

An Erratum to this article was published on 28 September 2016

This article has been updated

Abstract

We performed a scan for genetic variants associated with multiple phenotypes by comparing large genome-wide association studies (GWAS) of 42 traits or diseases. We identified 341 loci (at a false discovery rate of 10%) associated with multiple traits. Several loci are associated with multiple phenotypes; for example, a nonsynonymous variant in the zinc transporter SLC39A8 influences seven of the traits, including risk of schizophrenia (rs13107325: log-transformed odds ratio (log OR) = 0.15, P = 2 × 10−12) and Parkinson disease (log OR = −0.15, P = 1.6 × 10−7), among others. Second, we used these loci to identify traits that have multiple genetic causes in common. For example, variants associated with increased risk of schizophrenia also tended to be associated with increased risk of inflammatory bowel disease. Finally, we developed a method to identify pairs of traits that show evidence of a causal relationship. For example, we show evidence that increased body mass index causally increases triglyceride levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the different models considered for a given genomic region and two GWAS.
Figure 2: Heat map showing patterns of overlap between traits.
Figure 3: Multiple associations near the ABO gene.
Figure 4: Heat map showing patterns of correlated effect sizes for variants across pairs of traits.
Figure 5: Putative causal relationships between pairs of traits.

Similar content being viewed by others

Change history

  • 13 June 2016

    In the version of this article initially published online, the label on the y axis of the bottom-most plots in Figures 1 and 3a incorrectly included a negative symbol. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Stearns, F.W. One hundred years of pleiotropy: a retrospective. Genetics 186, 767–773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paaby, A.B. & Rockman, M.V. The many faces of pleiotropy. Trends Genet. 29, 66–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M. & Smoller, J.W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chillón, M. et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N. Engl. J. Med. 332, 1475–1480 (1995).

    Article  PubMed  Google Scholar 

  5. Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 95, 75–84 (1938).

    Article  Google Scholar 

  6. Steinberg, D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat. Med. 8, 1211–1217 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Pearl, J. Causality: Models, Reasoning and Inference vol. 29 (Cambridge University Press, 2000).

  8. Steinberg, D. The cholesterol controversy is over. Why did it take so long? Circulation 80, 1070–1078 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andreassen, O.A. et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am. J. Hum. Genet. 92, 197–209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andreassen, O.A. et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 9, e1003455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elliott, K.S. et al. Evaluation of the genetic overlap between osteoarthritis with body mass index and height using genome-wide association scan data. Ann. Rheum. Dis. 72, 935–941 (2013).

    Article  PubMed  Google Scholar 

  14. Sivakumaran, S. et al. Abundant pleiotropy in human complex diseases and traits. Am. J. Hum. Genet. 89, 607–618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Styrkarsdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497, 517–520 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Pendergrass, S.A. et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. PLoS Genet. 9, e1003087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, L. et al. Disease risk factors identified through shared genetic architecture and electronic medical records. Sci. Transl. Med. 6, 234ra57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Katan, M.B. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1, 507–508 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, G.D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

    Article  PubMed  Google Scholar 

  23. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23 R1, R89–R98 (2014).

    Article  CAS  Google Scholar 

  24. Voight, B.F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, E.T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Panoutsopoulou, K. et al. The effect of FTO variation on increased osteoarthritis risk is mediated through body mass index: a Mendelian randomisation study. Ann. Rheum. Dis. 73, 2082–2086 (2014).

    Article  PubMed  Google Scholar 

  27. Holmes, M.V. et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am. J. Hum. Genet. 94, 198–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Silva, N.M.G. et al. Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 60, 1008–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Granell, R. et al. Effects of BMI, fat mass, and lean mass on asthma in childhood: a Mendelian randomization study. PLoS Med. 11, e1001669 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pichler, I. et al. Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study. PLoS Med. 10, e1001462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parkes, M., Cortes, A., van Heel, D.A. & Brown, M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Fortune, M.D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  34. Denny, J.C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  36. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pickrell, J.K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flint, J. & Mackay, T.F.C. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perry, J.R.B. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richard-Miceli, C. & Criswell, L.A. Emerging patterns of genetic overlap across autoimmune disorders. Genome Med. 4, 6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wessel, J. et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun. 6, 5897 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Franchini, M. & Lippi, G. The intriguing relationship between the ABO blood group, cardiovascular disease, and cancer. BMC Med. 13, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kominato, Y., Tsuchiya, T., Hata, N., Takizawa, H. & Yamamoto, F. Transcription of human ABO histo-blood group genes is dependent upon binding of transcription factor CBF/NF-Y to minisatellite sequence. J. Biol. Chem. 272, 25890–25898 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeck, W.R., Siebold, A.P. & Sharpless, N.E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11, 727–731 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Elks, C.E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, R. et al. Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 8, e1002746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richards, J.B. et al. Male-pattern baldness susceptibility locus at 20p11. Nat. Genet. 40, 1282–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamilton, J.B. Patterned loss of hair in man; types and incidence. Ann. NY Acad. Sci. 53, 708–728 (1951).

    Article  CAS  PubMed  Google Scholar 

  56. Eaton, W.W. et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am. J. Psychiatry 163, 521–528 (2006).

    Article  PubMed  Google Scholar 

  57. Eaton, W. et al. Coeliac disease and schizophrenia: population based case control study with linkage of Danish national registers. Br. Med. J. 328, 438–439 (2004).

    Article  Google Scholar 

  58. Benros, M.E. et al. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am. J. Psychiatry 168, 1303–1310 (2011).

    Article  PubMed  Google Scholar 

  59. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  60. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  61. Pi-Sunyer, X. et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial. Diabetes Care 30, 1374–1383 (2007).

    Article  PubMed  Google Scholar 

  62. Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Würtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Freathy, R.M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Rivkees, S.A., Bode, H.H. & Crawford, J.D. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N. Engl. J. Med. 318, 599–602 (1988).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism–derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Visscher, P.M. et al. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ueland, P.M., Hustad, S., Schneede, J., Refsum, H. & Vollset, S.E. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol. Sci. 22, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, G. et al. Assessing the causal relationship of maternal height on birth size and gestational age at birth: a Mendelian randomization analysis. PLoS Med. 12, e1001865 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gianola, D. Assortative mating and the genetic correlation. Theor. Appl. Genet. 62, 225–231 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Evans, D.M. et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet. 9, e1003919 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  75. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature http://dx.doi.org/10.1038/nature17671 (2016).

  77. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manning, A.K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Human Genome Research Institute of the National Institutes of Health (grant R44HG006981 to 23andMe) and the National Institute of Mental Health (grant R01MH106842 to J.K.P.). We thank the customers of 23andMe for making this work possible, the GWAS consortia that made summary statistics available to us, L. Jostins for providing updated summary statistics from the Crohn's disease and ulcerative colitis GWAS, and G. Coop and M. Stephens for helpful discussions. We thank D. Golan and J. Pritchard for comments on a previous version of this manuscript. We thank D. Cesarini and the Social Science Genetic Association Consortium for access to summary statistics from the association study of educational attainment.

Data on glycemic traits have been contributed by MAGIC investigators and have been downloaded from http://www.magicinvestigators.org/. Data on CAD and myocardial infarction have been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from http://www.cardiogramplusc4d.org/.

We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The iSelect chips were funded by the French National Foundation on Alzheimer disease and related disorders. EADI was supported by LABEX (Laboratory of Excellence program investment for the future) DISTALZ grant, INSERM, Institut Pasteur de Lille, Université de Lille 2, and the Lille University Hospital. GERAD was supported by the Medical Research Council (grant 503480), Alzheimer's Research UK (grant 503176), the Wellcome Trust (grant 082604/2/07/Z), and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grants 01GI0102, 01GI0711, and 01GI0420. CHARGE was partly supported by NIH/NIA grant R01 AG033193 and NIA grant AG081220 and AGES contract N01-AG-12100, NHLBI grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by NIH/NIA grants U01 AG032984, U24 AG021886, and U01 AG016976, and by Alzheimer's Association grant ADGC-10-196728.

Author information

Authors and Affiliations

Authors

Contributions

J.K.P. developed and applied the methods for pairwise analysis of association studies. T.B. contributed to the splitting of GWAS hits into independent blocks. J.Z.L. performed the LD score regression analyses. L.S. contributed to the analysis of the ABO region. J.Y.T. and D.A.H. performed and analyzed the studies from 23andMe. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Joseph K Pickrell.

Ethics declarations

Competing interests

J.Y.T. and D.A.H. are employees of the company 23andMe.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–18 and Supplementary Table 2. (PDF 2412 kb)

Supplementary Table 1

Genomic regions that contain a variant that influences more than one trait. (TXT 81 kb)

Supplementary Data 1

23andMe analysis summary: age of first menses. (PDF 6120 kb)

Supplementary Data 2

23andMe analysis summary: age of voice deepening. (PDF 1423 kb)

Supplementary Data 3

23andMe analysis summary: any allergy. (PDF 3138 kb)

Supplementary Data 4

23andMe analysis summary: any asthma. (PDF 2591 kb)

Supplementary Data 5

23andMe analysis summary: breast size. (PDF 2190 kb)

Supplementary Data 6

23andMe analysis summary: childhood ear infections. (PDF 2169 kb)

Supplementary Data 7

23andMe analysis summary: hypermobility Beighton score. (PDF 2448 kb)

Supplementary Data 8

23andMe analysis summary: hypothyroidism. (PDF 2333 kb)

Supplementary Data 9

23andMe analysis summary: male pattern baldness. (PDF 3708 kb)

Supplementary Data 10

23andMe analysis summary: migraine. (PDF 2430 kb)

Supplementary Data 11

23andMe analysis summary: nearsightedness. (PDF 4119 kb)

Supplementary Data 12

23andMe analysis summary: Parkinson disease. (PDF 2709 kb)

Supplementary Data 13

23andMe analysis summary: photic sneeze. (PDF 3833 kb)

Supplementary Data 14

23andMe analysis summary: tonsillectomy. (PDF 3043 kb)

Supplementary Data 15

23andMe analysis summary: unibrow. (PDF 3796 kb)

Supplementary Data 16

23andMe analysis summary: morphology, chin dimple. (PDF 3714 kb)

Supplementary Data 17

23andMe analysis summary: nose size. (PDF 2179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickrell, J., Berisa, T., Liu, J. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709–717 (2016). https://doi.org/10.1038/ng.3570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing