Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing

Abstract

Domestic pigs have evolved genetic adaptations to their local environmental conditions, such as cold and hot climates. We sequenced the genomes of 69 pigs from 15 geographically divergent locations in China and detected 41 million variants, of which 21 million were absent from the dbSNP database. In a genome-wide scan, we identified a set of loci that likely have a role in regional adaptations to high- and low-latitude environments within China. Intriguingly, we found an exceptionally large (14-Mb) region with a low recombination rate on the X chromosome that appears to have two distinct haplotypes in the high- and low-latitude populations, possibly underlying their adaptation to cold and hot environments, respectively. Surprisingly, the adaptive sweep in the high-latitude regions has acted on DNA that might have been introgressed from an extinct Sus species. Our findings provide new insights into the evolutionary history of pigs and the role of introgression in adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic variation in Chinese pigs.
Figure 2: Identification of candidate genes for local adaptation on the autosomes.
Figure 3: The selective sweep region around the VPS13A gene.
Figure 4: Characterization of the X-linked selective sweep region.
Figure 5: The X-linked selective sweep in northern Chinese pigs was possibly introgressed from an extinct Sus species.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Larson, G. et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621 (2005).

    Article  CAS  Google Scholar 

  2. Larson, G. et al. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc. Natl. Acad. Sci. USA 107, 7686–7691 (2010).

    Article  CAS  Google Scholar 

  3. Wang, L. et al. in Animal Genetic Resources in China: Pigs (ed. China National Commission of Animal Genetic Resources) 2–16 (China Agricultural Press, 2011).

  4. Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl. Acad. Sci. USA 100, 5268–5273 (2003).

    Article  CAS  Google Scholar 

  5. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article  CAS  Google Scholar 

  6. Lamason, R.L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

    Article  CAS  Google Scholar 

  7. Jones, F.C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    Article  CAS  Google Scholar 

  8. Kamberov, Y.G. et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152, 691–702 (2013).

    Article  CAS  Google Scholar 

  9. Rubin, C.J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).

    Article  CAS  Google Scholar 

  10. Atanur, S.S. et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691–703 (2013).

    Article  CAS  Google Scholar 

  11. Axelsson, E. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360–364 (2013).

    Article  CAS  Google Scholar 

  12. Shapiro, M.D. et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339, 1063–1067 (2013).

    Article  CAS  Google Scholar 

  13. Groenen, M.A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

    Article  CAS  Google Scholar 

  14. Rubin, C.J. et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 109, 19529–19536 (2012).

    Article  CAS  Google Scholar 

  15. Li, M. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 45, 1431–1438 (2013).

    Article  CAS  Google Scholar 

  16. Fang, X. et al. The sequence and analysis of a Chinese pig genome. Gigascience 1, 16 (2012).

    Article  CAS  Google Scholar 

  17. Bosse, M. et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 8, e1003100 (2012).

    Article  CAS  Google Scholar 

  18. Tortereau, F. et al. A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics 13, 586 (2012).

    Article  CAS  Google Scholar 

  19. Cornforth, M.N. & Eberle, R.L. Termini of human chromosomes display elevated rates of mitotic recombination. Mutagenesis 16, 85–89 (2001).

    Article  CAS  Google Scholar 

  20. Muotri, A.R., Marchetto, M.C., Coufal, N.G. & Gage, F.H. The necessary junk: new functions for transposable elements. Hum. Mol. Genet. 16 Spec. No. 2, R159–R167 (2007).

  21. Boulant, J.A. & Dean, J.B. Temperature receptors in the central nervous system. Annu. Rev. Physiol. 48, 639–654 (1986).

    Article  CAS  Google Scholar 

  22. Adolph, E.F. & Molnar, G.W. Exchanges of heat and tolerances to cold in men exposed to outdoor weather. Am. J. Physiol. 146, 507–537 (1946).

    Article  CAS  Google Scholar 

  23. Chaffee, R.R. et al. Comparative chemical thermoregulation in cold- and heat-acclimated rodents, insectivores, protoprimates, and primates. Fed. Proc. 28, 1029–1034 (1969).

    CAS  PubMed  Google Scholar 

  24. Stocks, J.M., Taylor, N.A., Tipton, M.J. & Greenleaf, J.E. Human physiological responses to cold exposure. Aviat. Space Environ. Med. 75, 444–457 (2004).

    PubMed  Google Scholar 

  25. Jansky, L. & Hart, J.S. Cardiac output and organ blood flow in warm- and cold-acclimated rats exposed to cold. Can. J. Physiol. Pharmacol. 46, 653–659 (1968).

    Article  CAS  Google Scholar 

  26. Alazami, A.M. et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am. J. Hum. Genet. 83, 684–691 (2008).

    Article  CAS  Google Scholar 

  27. Schmidt, E.M. et al. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J. 27, 2799–2806 (2013).

    Article  CAS  Google Scholar 

  28. Keatinge, W.R. et al. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am. J. Med. 81, 795–800 (1986).

    Article  CAS  Google Scholar 

  29. Ma, J. et al. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs. BMC Genomics 11, 159 (2010).

    Article  Google Scholar 

  30. Nachman, M.W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 17, 481–485 (2001).

    Article  CAS  Google Scholar 

  31. Choo, K.H. Why is the centromere so cold? Genome Res. 8, 81–82 (1998).

    Article  CAS  Google Scholar 

  32. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  Google Scholar 

  33. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    Article  CAS  Google Scholar 

  34. Frantz, L.A. et al. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol. 14, R107 (2013).

    Article  Google Scholar 

  35. Ai, H. et al. Inference of population history and genome-wide detection of signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics 15, 834 (2014).

    Article  Google Scholar 

  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  37. Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009).

    Article  CAS  Google Scholar 

  38. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  39. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  40. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  Google Scholar 

  41. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  Google Scholar 

  42. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  43. Shriver, M.D. et al. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum. Genomics 1, 274–286 (2004).

    Article  CAS  Google Scholar 

  44. Reich, D., Thangaraj, K., Patterson, N., Price, A.L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article  CAS  Google Scholar 

  45. Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    Article  CAS  Google Scholar 

  46. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  47. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    Article  CAS  Google Scholar 

  48. Fan, Y. et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs. PLoS ONE 8, e62534 (2013).

    Article  CAS  Google Scholar 

  49. Druet, T. & Georges, M. A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184, 789–798 (2010).

    Article  CAS  Google Scholar 

  50. Thomson, R., Pritchard, J.K., Shen, P., Oefner, P.J. & Feldman, M.W. Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc. Natl. Acad. Sci. USA 97, 7360–7365 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Andersson for critical discussions and reading of the manuscript. This study is supported by the National Key Research Project of China (2013ZX08006-5), the Natural Science Foundation of China (31230069) and the Changjiang Scholars and Innovative Research Team in University (IRT1136).

Author information

Authors and Affiliations

Authors

Contributions

L. Huang and J.R. designed the study and analyzed the data. J.R., B.Y., H.A., X.F., R.N. and L. Huang wrote the manuscript. H.A., X.F., B.Y., Z.H., H.C., L.M., F.Z., L. Zhang, L.C., W.H., T.H., W.D. and R.N. performed bioinformatics analyses. J.Y., X.Y., L. Zhou, L. Han, J.L., S.S., X.X., B.L., Y.S., Y.L. and H.Y. collected data and performed sequencing and genotyping experiments.

Corresponding authors

Correspondence to Jun Ren or Lusheng Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19, Supplementary Tables 1–10 and 14–22, and Supplementary Note. (PDF 4973 kb)

Supplementary Tables 11–13

Supplementary Tables 11–13. (XLS 157 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, H., Fang, X., Yang, B. et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47, 217–225 (2015). https://doi.org/10.1038/ng.3199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing