Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes

Abstract

Traditionally, the process of domestication is assumed to be initiated by humans, involve few individuals and rely on reproductive isolation between wild and domestic forms. We analyzed pig domestication using over 100 genome sequences and tested whether pig domestication followed a traditional linear model or a more complex, reticulate model. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data. In addition, our results show that, despite gene flow, the genomes of domestic pigs have strong signatures of selection at loci that affect behavior and morphology. We argue that recurrent selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created 'islands of domestication' in the genome. Our results have major ramifications for the understanding of animal domestication and suggest that future studies should employ models that do not assume reproductive isolation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the models tested in this study.
Figure 2: Ancestry of wild boars and domestic pigs in Europe and Asia.
Figure 3: Model-based ancestry analysis.
Figure 4: Posterior density distributions of demographic parameters.
Figure 5: Example of a parallel sweep in ASD and EUD.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Childe, V.G. The Dawn of European Civilization 6th edn. (Routledge & Kegan Paul, 1968).

  2. Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).

  3. Price, E.O. Animal Domestication and Behavior (CABI Publishing, 2002).

  4. Driscoll, C.A., Macdonald, D.W. & O'Brien, S.J. From wild animals to domestic pets, an evolutionary view of domestication. Proc. Natl. Acad. Sci. USA 106, 9971–9978 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. O'Connor, T.P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).

    Article  Google Scholar 

  6. Larson, G. et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hanotte, O. et al. African pastoralism: genetic imprints of origins and migrations. Science 296, 336–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc. Natl. Acad. Sci. USA 98, 5927–5932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naderi, S. et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc. Natl. Acad. Sci. USA 105, 17659–17664 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pedrosa, S. et al. Evidence of three maternal lineages in Near Eastern sheep supporting multiple domestication events. Proc. Biol. Sci. 272, 2211–2217 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vilà, C. et al. Widespread origins of domestic horse lineages. Science 291, 474–477 (2001).

    Article  PubMed  Google Scholar 

  12. Larson, G. & Fuller, D.Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).

    Article  Google Scholar 

  13. Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 105, 11597–11604 (University of Oklahoma Press, 2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Macneish, R.S. The Origins of Agriculture and Settled Life (University of Oklahoma Press, 1992).

  15. Zeder, M.A. in Harlan II: Biodiversity in Agriculture: Domestication, Evolution and Sustainability (eds. Damania, A. & Gepts, P.) 227–229 (Univ. California Press, 2011).

  16. Vigne, J.-D. The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. C. R. Biol. 334, 171–181 (2011).

    Article  PubMed  Google Scholar 

  17. Dobney, K. & Larson, G. Genetics and animal domestication: new windows on an elusive process. J. Zool. (Lond.) 269, 261–271 (2006).

    Google Scholar 

  18. Marshall, F.B., Dobney, K., Denham, T. & Capriles, J.M. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc. Natl. Acad. Sci. USA 111, 6153–6158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ervynck, A., Hongo, H., Dobney, K. & Meadow, R. Born free? New evidence for the status of Sus scrofa at Neolithic Çayönü Tepesi (Southeastern Anatolia, Turkey). Paléorient 27, 47–73 (2001).

    Article  Google Scholar 

  20. Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38, 11–22 (2011).

    Article  Google Scholar 

  21. Larson, G. et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. USA 104, 15276–15281 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ottoni, C. et al. Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Mol. Biol. Evol. 30, 824–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Albarella, U., Manconi, F. & Trentacoste, A. in Ethnozooarchaeology. The Present and Past of Human-Animal Relationships (eds. Albarella, U. & Trentacoste, A.) 143–159 (Oxbow Books, 2011).

  24. White, S. From globalized pig breeds to capitalist pigs: a study in animal cultures and evolutionary history. Environ. Hist. 16, 94–120 (2011).

    Article  Google Scholar 

  25. Evin, A. et al. The long and winding road: identifying pig domestication through molar size and shape. J. Archaeol. Sci. 40, 735–743 (2013).

    Article  Google Scholar 

  26. Albarella, U., Davis, S.J.M., Detry, C.P. & Rowley-Conwy, P. Pigs of the 'Far West': the biometry of Sus from archaeological sites in Portugal. Anthropozoologica 40, 27–54 (2005).

    Google Scholar 

  27. Rowley-Conwy, P., Albarella, U. & Dobney, K. Distinguishing wild boar from domestic pigs in prehistory: a review of approaches and recent results. J. World Prehist. 25, 1–44 (2012).

    Article  Google Scholar 

  28. Owen, J. et al. The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. J. Archaeol. Sci. 43, 159–167 (2014).

    Article  Google Scholar 

  29. Porter, V. Pigs: A Handbook to the Breeds of the World (Helm Information, 1993).

  30. Groenen, M.A.M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bosse, M. et al. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat. Commun. 5, 4392 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Bosse, M. et al. Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Mol. Ecol. 23, 4089–4102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frantz, L.A. et al. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol. 14, R107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bosse, M. et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 8, e1003100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frantz, L.A.F., Madsen, O., Megens, H.-J., Groenen, M.A.M. & Lohse, K. Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island Southeast Asian Sus species during the Plio-Pleistocene climatic fluctuations. Mol. Ecol. 23, 5566–5574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ai, H. et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 47, 217–225 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566–1575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pavlidis, P., Živkovic, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huber, C.D., Nordborg, M., Hermisson, J. & Hellmann, I. Keeping it local: evidence for positive selection in Swedish Arabidopsis thaliana. Mol. Biol. Evol. 31, 3026–3039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andersson-Eklund, L. et al. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar × Large White intercross. J. Anim. Sci. 76, 694–700 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Rubin, C.-J. et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 109, 19529–19536 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karim, L. et al. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat. Genet. 43, 405–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Setoguchi, K. et al. Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet. 10, 43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quartu, M. et al. Neurturin, persephin, and artemin in the human pre- and full-term newborn and adult hippocampus and fascia dentata. Brain Res. 1041, 157–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Simanainen, U. et al. Evidence for increased tissue androgen sensitivity in neurturin knockout mice. J. Endocrinol. 218, 151–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Oschipok, L.W., Teh, J., McPhail, L.T. & Tetzlaff, W. Expression of Semaphorin3C in axotomized rodent facial and rubrospinal neurons. Neurosci. Lett. 434, 113–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Hernández-Montiel, H.L., Tamariz, E., Sandoval-Minero, M.T. & Varela-Echavarría, A. Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding. J. Comp. Neurol. 506, 387–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Gonthier, B. et al. Functional interaction between matrix metalloproteinase-3 and semaphorin-3C during cortical axonal growth and guidance. Cereb. Cortex 17, 1712–1721 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Ruediger, T. et al. Integration of opposing semaphorin guidance cues in cortical axons. Cereb. Cortex 23, 604–614 (2013).

    Article  PubMed  Google Scholar 

  50. Niquille, M. et al. Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol. 7, e1000230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pasterkamp, R.J., Kolk, S.M., Hellemons, A.J.C.G.M. & Kolodkin, A.L. Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev. Biol. 7, 98 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown, C.B. et al. PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 128, 3071–3080 (2001).

    CAS  PubMed  Google Scholar 

  53. Ultanir, S.K. et al. Chemical genetic identification of NDR1/2 kinase substrates AAK1 and Rabin8 uncovers their roles in dendrite arborization and spine development. Neuron 73, 1127–1142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chevallier, J. et al. Rab35 regulates neurite outgrowth and cell shape. FEBS Lett. 583, 1096–1101 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ong, S.H. et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol. Cell. Biol. 20, 979–989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sokol, D.K. et al. High levels of Alzheimer β-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J. Child Neurol. 21, 444–449 (2006).

    Article  PubMed  Google Scholar 

  57. Grayton, H.M., Missler, M., Collier, D.A. & Fernandes, C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 8, e67114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhoiwala, D.L. et al. Overexpression of RCAN1 isoform 4 in mouse neurons leads to a moderate behavioral impairment. Neurol. Res. 35, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Dierssen, M. et al. Behavioral characterization of a mouse model overexpressing DSCR1/RCAN1. PLoS ONE 6, e17010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, K.S., Larsen, N., Short, T., Plastow, G. & Rothschild, M.F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome 11, 131–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, P. et al. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice. Proc. Natl. Acad. Sci. USA 110, 10759–10764 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Valette, M. et al. Eating behaviour in obese patients with melanocortin-4 receptor mutations: a literature review. Int. J. Obes. (Lond.) 37, 1027–1035 (2013).

    Article  CAS  Google Scholar 

  63. Wojcik, S.M. et al. Genetic markers of a Munc13 protein family member, BAIAP3, are gender specifically associated with anxiety and benzodiazepine abuse in mice and humans. Mol. Med. 19, 135–148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garud, N.R., Messer, P.W., Buzbas, E.O. & Petrov, D.A. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 11, e1005004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Freedman, A.H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl. Acad. Sci. USA 109, 8202–8206 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Turner, T.L., Hahn, M.W. & Nuzhdin, S.V. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 3, e285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ludwig, A. et al. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Phil. Trans. R. Soc. Lond. B 370, 20130386 (2015).

    Article  CAS  Google Scholar 

  69. Vilà, C., Seddon, J. & Ellegren, H. Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet. 21, 214–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pickrell, J.K. & Reich, D. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30, 377–389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larson, G. & Burger, J. A population genetics view of animal domestication. Trends Genet. 29, 197–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Girdland Flink, L. et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc. Natl. Acad. Sci. USA 111, 6184–6189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frantz, L.A.F. et al. Evolution of Tibetan wild boars. Nat. Genet. 47, 188–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hudson, R.R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Thornton, K. libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19, 2325–2327 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Peter, B.M., Huerta-Sanchez, E. & Nielsen, R. Distinguishing between selective sweeps from standing variation and from a de novo mutation. PLoS Genet. 8, e1003011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wegmann, D., Leuenberger, C., Neuenschwander, S. & Excoffier, L. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics 11, 116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wegmann, D., Leuenberger, C. & Excoffier, L. Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207–1218 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leuenberger, C. & Wegmann, D. Bayesian computation and model selection without likelihoods. Genetics 184, 243–252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abraham, G. & Inouye, M. Fast principal component analysis of large-scale genome-wide data. PLoS ONE 9, e93766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, G.K., Marjoram, P. & Wall, J.D. Fast and flexible simulation of DNA sequence data. Genome Res. 19, 136–142 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Peter for his help and guidance during the model-fitting step of the analysis as well as for kindly sharing his code. We are also indebted to D. Wegmann for providing us with the latest version of ABCtoolbox. We also thank K. Lohse for his insights during the conception of the project and D. Caspani for his help with the figures. We thank B. Dibbits for his help during the laboratory work. This project is financially supported by the European Research Council under the European Community's 256 Seventh Framework Programme (FP7/2007–2013)/ERC (SelSweep), grant agreements 249894 and ERC-2013-StG 337574-UNDEAD. J.G.S. was supported by US National Institutes of Health grant R01-GM40282 and National Science Foundation postdoctoral fellowship DBI-1402120.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M.G., L.A.F.F. and G.L. designed the study. R.P.M.A.C. provided the samples. L.A.F.F., H.-J.M., O.M., M.B. and Y.P. aligned and filtered the data. L.A.F.F. and J.G.S. performed the modeling. L.A.F.F., J.G.S. and A.C. performed the selection scan. L.A.F.F., J.G.S., G.L. and M.A.M.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Laurent A F Frantz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Nucleotide distance to the outgroup (S. verrucosus).

Each circle represents the mean distance computed in 10-kb windows across the genome. The dashed lines correspond to ±1 s.d. of the mean distance computed across all individuals.

Supplementary Figure 2 All models investigated in this study.

Schematic of all models tested in this study. The upper six models were first compared together. In this comparison, the full model (outlined with a gray square) was the best-fitting model. When all seven models were tested together, the ghost model had the best fit (outlined with a black square). All priors and support values are reported in Supplementary Table 5.

Supplementary Figure 3 Distribution of raw summary statistics under the full and null models.

The dashed red line represents the value of the observed summary statistic. S_mean, mean number of segregating sites; n1, number of singletons; thetaPi, θπ; tajd, Tajima’s D.

Supplementary Figure 4 Result of the TreeMix analysis for the 602 pigs genotyped on the porcine 60SNP array data set.

Supplementary Figure 5 Posterior distribution of all parameters in the full model.

Population sizes are the relative population size (the ratio of the current population size over the population size at t0; Fig. 1). Dashed lines represent the prior distributions. The full model is as in Supplementary Figure 1.

Supplementary Figure 6 Result of PCA (PC1-PC2) based on 602 genotyped pigs.

Supplementary Figure 7 Result of PCA (PC3-PC4) based on 602 genotyped pigs.

Supplementary Figure 8 Example of genealogy at a sweep region that could be explained by admixture ASD ↔ EUD.

Supplementary Figure 9 Diverse sweep statistics computed in the PLAG1 region.

Dashed blue and red lines represent thresholds of P = 0.05 and P = 0.01, respectively. (a) CLR. (b) DAF. (c) Tajima’s D. (d) H12 statistic.

Supplementary Figure 10 Nucleotide divergence relative to the outgroup in the swept region.

Each box plot, for the samples shown along the y axis represents the distribution of raw nucleotide divergence relative to the outgroup in 1,000 randomly selected 10-kb bins across the genome. Red dots represent the mean nucleotide divergence relative to the outgroup in the sweep region in Figure 4.

Supplementary Figure 11 PLS distribution of 10,000 (out of 2,000,000) retained simulations and observed data under the full model.

Simulations are shown in black, and observed data are shown in red.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 4–6 and Supplementary Note. (PDF 2662 kb)

Supplementary Table 1

List of samples used in this study. (XLSX 34 kb)

Supplementary Table 2

Support for each model in Supplementary Figure 3. (XLSX 36 kb)

Supplementary Table 3

Prior and posterior distributions for the full model. All population size (N) and migration rate (m) parameters are in log scale. All other models (Supplementary Fig. 3) use the same prior bound. RMSE is the root mean square error. P_value_KS corresponds to the P value of the Kolomogorov-Smirnov test of uniformity of the posterior quantiles (see “Validation of ABC procedure” in the Supplementary Note). (XLSX 9 kb)

Supplementary Table 7

List of genes with GO term enrichment (P < 0.01) in sweep regions in EUD. (XLSX 6 kb)

Supplementary Table 8

List of genes with GO term enrichment (P < 0.01) in sweep regions in ASD. (XLSX 5 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frantz, L., Schraiber, J., Madsen, O. et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 47, 1141–1148 (2015). https://doi.org/10.1038/ng.3394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3394

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research