Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome

Abstract

Monogenic disorders result from defects in a single gene. According to Mendel's laws, these disorders are inherited in either a recessive or dominant fashion. Autosomal-recessive disorders require a disease-causing variant on both alleles, and according to our current understanding, their pathogenicities are not influenced by each other. Here we present an autosomal-recessive disorder, nephrotic syndrome type 2 (MIM 600995), in which the pathogenicity of an NPHS2 allele encoding p.Arg229Gln depends on the trans-associated mutation. We show that, contrary to expectations, this allele leads to a disease phenotype only when it is associated specifically with certain 3′ NPHS2 mutations because of an altered heterodimerization and mislocalization of the encoded p.Arg229Gln podocin. The disease-associated 3′ mutations exert a dominant-negative effect on p.Arg229Gln podocin but behave as recessive alleles when associated with wild-type podocin. Therefore, the transmission rates for couples carrying the disease-associated mutations and p.Arg229Gln may be substantially different from those expected in autosomal-recessive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane targeting of wild-type podocin and p.Arg229Gln podocin as a function of the associated mutation in podocytes stably coexpressing podocin mutants.
Figure 2: Membrane targeting of endogenous podocin in urinary podocytes of cases with SRNS carrying p.Arg229Gln.
Figure 3: Structure of the wild-type podocin homodimer and the effect of p.Arg229Gln.
Figure 4: Superimposed average structures of the non-pathogenic and pathogenic dimers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mekahli, D. et al. Long-term outcome of idiopathic steroid-resistant nephrotic syndrome: a multicenter study. Pediatr. Nephrol. 24, 1525–1532 (2009).

    PubMed  Google Scholar 

  2. Tune, B.M. & Mendoza, S.A. Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J. Am. Soc. Nephrol. 8, 824–832 (1997).

    CAS  PubMed  Google Scholar 

  3. Benoit, G., Machuca, E. & Antignac, C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr. Nephrol. 25, 1621–1632 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    CAS  PubMed  Google Scholar 

  7. Santín, S. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1139–1148 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huber, T.B., Kottgen, M., Schilling, B., Walz, G. & Benzing, T. Interaction with podocin facilitates nephrin signaling. J. Biol. Chem. 276, 41543–41546 (2001).

    CAS  PubMed  Google Scholar 

  10. Huber, T.B. et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 12, 3397–3405 (2003).

    CAS  PubMed  Google Scholar 

  11. Roselli, S., Moutkine, I., Gribouval, O., Benmerah, A. & Antignac, C. Plasma membrane targeting of podocin through the classical exocytic pathway: effect of NPHS2 mutations. Traffic 5, 37–44 (2004).

    CAS  PubMed  Google Scholar 

  12. Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J. Biol. Chem. 273, 17221–17226 (1998).

    CAS  PubMed  Google Scholar 

  13. Berdeli, A. et al. NPHS2 (podocin) mutations in Turkish children with idiopathic nephrotic syndrome. Pediatr. Nephrol. 22, 2031–2040 (2007).

    PubMed  Google Scholar 

  14. Hinkes, B. et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 19, 365–371 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Ruf, R.G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15, 722–732 (2004).

    PubMed  Google Scholar 

  16. Machuca, E. et al. Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int. 75, 727–735 (2009).

    CAS  PubMed  Google Scholar 

  17. Tsukaguchi, H. et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J. Clin. Invest. 110, 1659–1666 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tonna, S.J. et al. NPHS2 variation in focal and segmental glomerulosclerosis. BMC Nephrol. 9, 13 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. Kerti, A. et al. NPHS2 homozygous p.R229Q variant: potential modifier instead of causal effect in focal segmental glomerulosclerosis. Pediatr. Nephrol. 28, 2061–2064 (2013).

    PubMed  Google Scholar 

  20. Köttgen, A. et al. The association of podocin R229Q polymorphism with increased albuminuria or reduced estimated GFR in a large population-based sample of US adults. Am. J. Kidney Dis. 52, 868–875 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Santín, S. et al. Clinical value of NPHS2 analysis in early- and adult-onset steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 344–354 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Büscher, A.K. et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 5, 2075–2084 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Caridi, G. et al. Prevalence, genetics, and clinical features of patients carrying podocin mutations in steroid-resistant nonfamilial focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 12, 2742–2746 (2001).

    CAS  PubMed  Google Scholar 

  24. He, N. et al. Recessive NPHS2 (Podocin) mutations are rare in adult-onset idiopathic focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 31–37 (2007).

    CAS  PubMed  Google Scholar 

  25. Hinkes, B.G. et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119, e907–e919 (2007).

    PubMed  Google Scholar 

  26. Ismaili, K. et al. Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr. Nephrol. 24, 287–294 (2009).

    PubMed  Google Scholar 

  27. Karle, S.M. et al. Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 13, 388–393 (2002).

    CAS  PubMed  Google Scholar 

  28. Kitamura, A. et al. Steroid-resistant nephrotic syndrome. Kidney Int. 74, 1209–1215 (2008).

    CAS  PubMed  Google Scholar 

  29. Machuca, E. et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J. Am. Soc. Nephrol. 21, 1209–1217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Megremis, S. et al. Nucleotide variations in the NPHS2 gene in Greek children with steroid-resistant nephrotic syndrome. Genet. Test. Mol. Biomarkers 13, 249–256 (2009).

    CAS  PubMed  Google Scholar 

  31. Monteiro, E.J., Pereira, A.C., Pereira, A.B., Krieger, J.E. & Mastroianni-Kirsztajn, G. NPHS2 mutations in adult patients with primary focal segmental glomerulosclerosis. J. Nephrol. 19, 366–371 (2006).

    CAS  PubMed  Google Scholar 

  32. Nakatsue, T. et al. Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy. Kidney Int. 67, 2239–2253 (2005).

    CAS  PubMed  Google Scholar 

  33. Sako, M. et al. Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int. 67, 1248–1255 (2005).

    CAS  PubMed  Google Scholar 

  34. Schultheiss, M. et al. No evidence for genotype/phenotype correlation in NPHS1 and NPHS2 mutations. Pediatr. Nephrol. 19, 1340–1348 (2004).

    PubMed  Google Scholar 

  35. Skálová, S., Podhola, M., Vondrak, K. & Chernin, G. Plasmapheresis-induced clinical improvement in a patient with steroid-resistant nephrotic syndrome due to podocin (NPHS2) gene mutation. Acta Medica (Hradec Kralove) 53, 157–159 (2010).

    Google Scholar 

  36. Voskarides, K. et al. NPHS2 screening with SURVEYOR in Hellenic children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 23, 1373–1375 (2008).

    PubMed  Google Scholar 

  37. Weber, S. et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 66, 571–579 (2004).

    CAS  PubMed  Google Scholar 

  38. Yu, Z. et al. Mutations in NPHS2 in sporadic steroid-resistant nephrotic syndrome in Chinese children. Nephrol. Dial. Transplant. 20, 902–908 (2005).

    CAS  PubMed  Google Scholar 

  39. Koziell, A. et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum. Mol. Genet. 11, 379–388 (2002).

    CAS  PubMed  Google Scholar 

  40. Sun, H. et al. A novel mutation in NPHS2 gene identified in a Chinese pedigree with autosomal recessive steroid-resistant nephrotic syndrome. Pathology 41, 661–665 (2009).

    CAS  PubMed  Google Scholar 

  41. Kerti, A. et al. NPHS2 p.V290M mutation in late-onset steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 28, 751–757 (2013).

    PubMed  Google Scholar 

  42. Mbarek, I.B. et al. Novel mutations in steroid-resistant nephrotic syndrome diagnosed in Tunisian children. Pediatr. Nephrol. 26, 241–249 (2011).

    PubMed  Google Scholar 

  43. Jungraithmayr, T.C. et al. Screening for NPHS2 mutations may help predict FSGS recurrence after transplantation. J. Am. Soc. Nephrol. 22, 579–585 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. Nishibori, Y. et al. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int. 66, 1755–1765 (2004).

    CAS  PubMed  Google Scholar 

  45. Ohashi, T., Uchida, K., Uchida, S., Sasaki, S. & Nihei, H. Intracellular mislocalization of mutant podocin and correction by chemical chaperones. Histochem. Cell Biol. 119, 257–264 (2003).

    CAS  PubMed  Google Scholar 

  46. Saleem, M.A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  47. Yokoyama, H., Fujii, S. & Matsui, I. Crystal structure of a core domain of stomatin from Pyrococcus horikoshii Illustrates a novel trimeric and coiled-coil fold. J. Mol. Biol. 376, 868–878 (2008).

    CAS  PubMed  Google Scholar 

  48. Testa, O.D., Moutevelis, E. & Woolfson, D.N. CC+: a relational database of coiled-coil structures. Nucleic Acids Res. 37, D315–D322 (2009).

    CAS  PubMed  Google Scholar 

  49. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  PubMed  Google Scholar 

  50. Mackerell, A.D. Jr., Feig, M. & Brooks, C.L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    CAS  Google Scholar 

  51. Bjelkmar, P., Larsson, P., Cuendet, M., Hess, B. & Lindahl, E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Lyonnet, L. Abel, S. Harvey and M. Muorah for careful reading and discussion of the manuscript and M. Saleem (Bristol Royal Hospital for Children, University of Bristol) for providing the podocyte cell line. We acknowledge E. Jávorszky, M. Bernáth, M. Krámer and Zs. Nagy for providing assistance, N. Goudin of the Necker Institute Imaging Facility for providing expert knowledge on confocal microscopy, G. Froment, D. Nègre and C. Costa for production of lentivectors (Structure Fédérative de Recherche BioSciences Gerland–Lyon Sud–UMS3444/US8) and the National Information Infrastructure Development Institute (NIIFI) supercomputing center (Hungary). We thank the patients and their family members for participation. Financial support for this work was provided by grants from the Fondation pour la Recherche Médicale (project DMP 2010-11-20-386 to C. Antignac), the Agence Nationale de la Recherche (GenPod project ANR-12-BSV1-0033.01 and 'Investments for the Future' program ANR-10-IAHU-01, both to C. Antignac), the European Community's 7th Framework program grant 2012-305608 (Eurenomics) to C. Antignac, Fondation Association pour la Recherche sur le Cancer (ARC) TÁMOP-4.2.1/B-09/1/KMR-2010-0001 to K.T., OTKA 84087/2010 to T.T., Hungarian Scientific Research Fund (OTKA NK101072 to A.P., K109718 to K.T. and PD101095 to D.K.M.) and a Bolyai János research fellowship of the Hungarian Academy of Sciences to K.T.

Author information

Authors and Affiliations

Authors

Contributions

C. Antignac, T.T., A.P. and K.T. designed the study based on a hypothesis generated by K.T. O.G., K.T. and A.K. performed the genetic studies. S.W., F.N., G.M., K.T., C. Arrondel and E.H.C. performed the functional studies. D.K.M., P.S. and A.P. modeled the podocin dimerization. K.T., D.K.M., S.W., G.M., A.P. and C. Antignac wrote the paper. All the authors agreed to publish the paper.

Corresponding authors

Correspondence to Kálmán Tory or Corinne Antignac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Pedigree of the two individuals carrying p.[V290M];[R229Q] with no proteinuria in adulthood

Supplementary Figure 2 Membrane-targeting of wild-type podocin and podocin R299Q as a function of the associated mutation in transiently transfected podocytes

(a,b) Wild-type podocin (columns 1–2) and podocin R229Q (columns 3–4) are shown in red, the coexpressed GFP-tagged podocin proteins (ordered according to the position of the mutation) in green. The plasma membrane is labeled with WGA and shown in blue. Both wild-type podocin and podocin R229Q are localized to the plasma membrane when coexpressed with either wild-type podocin, podocin R238S (panel a, rows 1, 3) or podocin V290M (panel b, row 1) (white pixels correspond to the merge of red, green and blue). Similarly, despite retention of podocin R138Q in the ER, both wild-type podocin and podocin R229Q are localized to the plasma membrane (panel a, row 2, magenta pixels correspond to red and blue). In contrast, while wild-type podocin reaches the plasma membrane (magenta pixels) in cells coexpressing podocin A284V, podocin A288T (panel a, rows 4, 5) podocin R291W, podocin A297V or podocin E310K (panel b, rows 2-4) podocin R229Q is retained in cytoplasmic compartments. b, last row, 3rd column: The arrow indicates a cell which does not express podocin E310K but only podocin R299Q, which is therefore well targeted to the plasma membrane. Percentages in green and red indicate the proportion of the WGA-labeled perimembranous area that colocalizes with GFP- or HA-tagged podocin proteins, respectively, within the presented cell. Similar results were found in 6-7 cells per group (c,d). Scale bars = 5 μm. (c,d) Membrane targeting of podocin proteins shown as the percentage of the plasma membrane (WGA) that is positive for GFP- (c) or HA-tagged podocin proteins (d), within 6-7 cells per group. GFP- and HA-tagged podocin proteins are indicated in green and red, respectively. The coexpressed podocin proteins are indicated in subscript. ♯ P ≤ 0.0027 vs. wtwt (wt-GFP coexpressed with wt-HA); * P ≤ 0.0039 vs. R229Qwt (R229Q-HA coexpressed with wt-GFP)

Source data

Supplementary Figure 3 Synaptopodin and podocin staining of urinary podocytes

Both synaptopodin and podocin staining confirm the presence of podocytes in the culture of urine sediments. In contrast to control patients with non-NPHS2 associated glomerulopathies (C1-C3), podocin is not targeted to the plasma membrane in the patient with p.[R229Q];[A284V] (Pt), as also shown in Figure 2. Scale bar = 20 μm.

Supplementary Figure 4 Punnett squares illustrating non-Mendelian transmission rates in theoretical couples with R229Q and the ‘associated mutations’

Individuals with expected early- or late-onset SRNS are in dark and light gray, respectively.

Supplementary Figure 5 Sequence alignment for human podocin and Pyrococcus horikoshii stomatin

There is a 35% identity and 65% homology for the modeled region (podocin residues 161-332): colored boxes show identities. Arrows above the sequence indicate the domain structure. Cyan corresponds to the N-terminal cytosolic fragment, magenta to the intra-membrane fragment and green to the C-terminal cytosolic fragment of podocin.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–5 (PDF 4784 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tory, K., Menyhárd, D., Woerner, S. et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat Genet 46, 299–304 (2014). https://doi.org/10.1038/ng.2898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing