Defining the role of common variation in the genomic and biological architecture of adult human height

Journal name:
Nature Genetics
Volume:
46,
Pages:
1173–1186
Year published:
DOI:
doi:10.1038/ng.3097
Received
Accepted
Published online

Abstract

Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate–related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.

At a glance

Figures

  1. Regional association plots for loci with multiple association signals.
    Figure 1: Regional association plots for loci with multiple association signals.

    (ad) Examples of multiple signals after approximate conditional joint multiple-SNP (GCTA-COJO) analysis. SNPs are represented by colored symbols according to the index SNP with which they are in strongest LD (r2 > 0.4). In some loci, the majority of signals cluster in and around a single gene, for example, at ACAN (a), ADAMTS17 (b) and PTCH1 (c), whereas at some loci multiple signals cluster through proximity (d).

  2. Quantifying the variance explained by height-associated SNPs at different levels of significance.
    Figure 2: Quantifying the variance explained by height-associated SNPs at different levels of significance.

    SNPs were selected from the GCTA-COJO analysis with the target cohort excluded from the meta-analysis. (ac) Partitioning of the variance of the SNP-derived genetic predictor using a within-family analysis in three studies: TwinGene (a), QIMR (b) and Framingham (c). The SNP-based predictor was adjusted by the first 20 principal components. The four variance and covariance components Vg, Ve, Cg and Ce are defined in the Online Methods. (d) Accuracy of predicting phenotype with the genetic predictor in unrelated individuals. The prediction R2 value shown on the y axis is the squared correlation between the phenotype and predictor. The SNP-based predictor was adjusted by the first 20 principal components. The solid line is the average prediction R2 value weighted by sample size over the five cohorts. The dashed line is the prediction accuracy inferred from the within-family prediction analysis (equation (19) in the Online Methods). (e) Estimate of variance explained by the selected SNPs from the GCTA-GREML analysis. The phenotype was adjusted by the first 20 principal components. Each error bar represents the standard error of the estimate. The estimates from all five cohorts (B-PROOF, FRAM, QIMR, TwinGene and WTCCC-T2D) were averaged by the inverse variance approach. The dashed line is the variance explained inferred from the within-family prediction analysis. In d and e, the number shown in each column is the number of SNPs used in the analysis.

  3. Tissue enrichment combined with pruned gene set network synthesis.
    Figure 3: Tissue enrichment combined with pruned gene set network synthesis.

    Genes within genome-wide significant height-associated loci were enriched for several relevant tissue annotations as well as gene sets. (a) Genes in associated loci tended to be highly expressed in tissues related to chondrocytes and osteoblasts (cartilage, joints and spine) and other musculoskeletal, cardiovascular and endocrine tissue types. The analysis was conducted using the DEPICT method and 37,427 human microarray samples. Tissue annotations are sorted by physiological system and significance. Data for significantly enriched (FDR < 0.05) tissues are shown in black. (b) Significantly enriched reconstituted gene sets (P < 1 × 10−11, FDR < 1 × 10−5) identified by DEPICT. Nodes represent reconstituted gene sets and are colored by statistical significance. Edge thickness between nodes is proportional to the degree of gene overlap as measured by the Jaccard index. Nodes with gene overlap greater than 25% were collapsed into single meta-nodes and are marked by blue borders. (c) Reconstituted gene sets comprised by the chordate embryonic development meta-node, which represented several gene sets relevant to human height (for example, ossification, embryonic skeletal system development and limb development).

  4. Overview of the analysis strategy implemented.
    Supplementary Fig. 1: Overview of the analysis strategy implemented.
  5. Quantile-quantile plot showing the P-value distribution of GWAS meta-analysis results after applying a single genomic control.
    Supplementary Fig. 2: Quantile-quantile plot showing the P-value distribution of GWAS meta-analysis results after applying a single genomic control.
  6. Manhattan plots.
    Supplementary Fig. 3: Manhattan plots.

    Plots of (a) results obtained from meta-analysis after applying a single genomic control correction and (b) results obtained from performing an approximate conditional and joint multiple-SNP analysis on the meta-analysis results. The red horizontal line in both plots represents the genome-wide significance threshold of P = 5 × 10–8.

  7. Examples of loci with multiple signals that cluster around the same gene or are in close proximity to others.
    Supplementary Fig. 4: Examples of loci with multiple signals that cluster around the same gene or are in close proximity to others.
  8. Partitioning the variance in the SNP-derived genetic predictor using a within-family analysis.
    Supplementary Fig. 5: Partitioning the variance in the SNP-derived genetic predictor using a within-family analysis.

    The variance of the SNP-based genetic predictor was partitioned into components due to real SNP effects (Vg), errors in estimating SNP effects (Ve) and population stratification (Cg + Ce) (Online Methods). The SNPs were selected from the approximate conditional and joint multiple-SNP association analysis with the target cohort being excluded from the meta-analysis. In b, d and f, the SNP-based predictor was adjusted by the first 20 principal components (PCs). The comparison between the results with and without PC adjustment demonstrates clearly the portioning of the variance component due to population stratification (Cg + Ce).

  9. Variance explained by the SNPs at known loci.
    Supplementary Fig. 6: Variance explained by the SNPs at known loci.

    Details of data and analyses can be found in the Online Methods. (a) Variance explained by all the SNPs within a certain physical distance of the top associated SNPs (including the top SNPs). (b) Variance explained by the SNPs at the known loci excluding the top SNPs divided by the number of these SNPs. Estimates in b are without LD adjustment. Error bars are the standard errors of the estimates.

  10. Results from GRAIL analysis.
    Supplementary Fig. 7: Results from GRAIL analysis.

    A subset of the 697 lead height SNPs are arranged along the outer circle alternating with colors. The inner circle represents the individual prioritized (P < 1 × 10–6) genes. Gene names shown in black have literature connections, and the ones in gray do not. The redness and thickness of the lines connecting pairs of genes represent the strength of the connections. Top-ranking keywords prioritized by GRAIL were ‘transcription’, ‘growth’, ‘nuclear’, ‘factor’, ‘binding’, ‘collagen’, ‘differentiation’, ‘promoter’, ‘development’, ‘ribosomal’, ‘bone’, ‘mice’, ‘expression’ and ‘cartilage’.

  11. DEPICT cell type enrichment analysis.
    Supplementary Fig. 8: DEPICT cell type enrichment analysis.

    Genes in associated height loci tended to be highly expressed in, among other cell types, chondrocytes and mesenchymal stem cells. The analysis was conducted based on the DEPICT method and 37,427 human microarray samples. Significantly enriched (FDR < 0.05) cell types are color coded in violet. The figure also includes tissue enrichment results, which were not shown in Figure 3 of the main text.

  12. Partitioning the variance explained by chromosome length.
    Supplementary Fig. 9: Partitioning the variance explained by chromosome length.

    (a) The proportion of variance explained by the genome-wide significant SNPs on a chromosome plotted against chromosome length. (b) The correlation of the variance explained by the top GWAS SNPs on each chromosome against the estimate from Yang et al. (2011) for that chromosome. Note: the numbers in red circles indicate chromosome number.

References

  1. Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. 52, 399433 (1918).
  2. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399408 (2003).
  3. Visscher, P.M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).
  4. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565569 (2010).
  5. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519525 (2011).
  6. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832838 (2010).
  7. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369375 (2012).
  8. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 7682 (2011).
  9. Voight, B.F. et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793 (2012).
  10. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807812 (2011).
  11. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 5258 (2010).
  12. Lui, J.C. et al. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum. Mol. Genet. 21, 51935201 (2012).
  13. Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
  14. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
  15. de Pontual, L. et al. Germline deletion of the miR-17~92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 10261030 (2011).
  16. Morales, J. et al. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am. J. Hum. Genet. 85, 558568 (2009).
  17. Li, Y. et al. Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am. J. Hum. Genet. 87, 757767 (2010).
  18. Tian, J. et al. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am. J. Hum. Genet. 87, 768778 (2010).
  19. Visscher, P.M. Sizing up human height variation. Nat. Genet. 40, 489490 (2008).
  20. Goldstein, D.B. Common genetic variation and human traits. N. Engl. J. Med. 360, 16961698 (2009).
  21. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the second chromosome. Roux's Arch. Dev. Biol. 193, 267282 (1984).
  22. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 21902191 (2010).
  23. Kang, H.M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348354 (2010).
  24. Winkler, T.W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 11921212 (2014).
  25. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559575 (2007).
  26. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904909 (2006).
  27. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Inc., 1998).
  28. Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, e1003993 (2013).
  29. Geller, F. et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat. Genet. 46, 957963 (2014).
  30. Cvejic, A. et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat. Genet. 45, 542545 (2013).
  31. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309316 (2007).
  32. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691D697 (2011).
  33. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109D114 (2012).

Download references

Author information

  1. These authors contributed equally to this work.

    • Andrew R Wood,
    • Tonu Esko,
    • Jian Yang,
    • Sailaja Vedantam,
    • Tune H Pers,
    • Stefan Gustafsson &
    • Michael E Goddard
  2. These authors jointly directed this work.

    • Goncalo R Abecasis,
    • Daniel I Chasman,
    • Michael E Goddard,
    • Peter M Visscher,
    • Joel N Hirschhorn &
    • Timothy M Frayling

Affiliations

  1. Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.

    • Andrew R Wood,
    • Dorota Pasko,
    • Michael N Weedon &
    • Timothy M Frayling
  2. Estonian Genome Center, University of Tartu, Tartu, Estonia.

    • Tonu Esko,
    • Reedik Mägi,
    • Evelin Mihailov,
    • Krista Fischer,
    • Toomas Haller,
    • Lili Milani,
    • Andrew P Morris,
    • Mari Nelis,
    • Markus Perola,
    • Eva Reinmaa &
    • Andres Metspalu
  3. Division of Endocrinology, Genetics and Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, USA.

    • Tonu Esko,
    • Sailaja Vedantam,
    • Tune H Pers,
    • Cameron D Palmer &
    • Joel N Hirschhorn
  4. Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.

    • Tonu Esko,
    • Sailaja Vedantam,
    • Tune H Pers,
    • Karol Estrada,
    • Cameron D Palmer,
    • Cecilia M Lindgren,
    • Alkes L Price &
    • Joel N Hirschhorn
  5. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.

    • Tonu Esko,
    • Tune H Pers &
    • Joel N Hirschhorn
  6. Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.

    • Jian Yang,
    • Anna A E Vinkhuyzen,
    • Gibran Hemani,
    • Joseph E Powell &
    • Peter M Visscher
  7. University of Queensland Diamantina Institute, Translation Research Institute, Brisbane, Queensland, Australia.

    • Jian Yang,
    • Gibran Hemani,
    • Joseph E Powell &
    • Peter M Visscher
  8. Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.

    • Tune H Pers
  9. Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

    • Stefan Gustafsson,
    • Tove Fall,
    • Johan Ärnlöv,
    • Ann-Christine Syvänen &
    • Erik Ingelsson
  10. Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden.

    • Stefan Gustafsson,
    • Tove Fall,
    • Johan Ärnlöv &
    • Erik Ingelsson
  11. Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

    • Audrey Y Chu,
    • Lynda M Rose,
    • Paul M Ridker &
    • Daniel I Chasman
  12. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.

    • Karol Estrada,
    • Carolina Medina-Gomez,
    • Suzanne van Dijk,
    • Nathalie van der Velde,
    • Fernando Rivadeneira &
    • André G Uitterlinden
  13. Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Karol Estrada &
    • Stephan Ripke
  14. Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.

    • Jian'an Luan,
    • Felix R Day,
    • Jing Hua Zhao,
    • Robert A Scott,
    • Nita G Forouhi,
    • Claudia Langenberg,
    • Ken K Ong,
    • Nicholas J Wareham &
    • Ruth J F Loos
  15. Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

    • Zoltán Kutalik
  16. Swiss Institute of Bioinformatics, Lausanne, Switzerland.

    • Zoltán Kutalik,
    • Sven Bergmann &
    • Jacques S Beckmann
  17. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.

    • Zoltán Kutalik,
    • Sven Bergmann &
    • Jacques S Beckmann
  18. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.

    • Najaf Amin,
    • Ayse Demirkan,
    • Aaron Isaacs,
    • Ben A Oostra &
    • Cornelia M van Duijn
  19. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.

    • Martin L Buchkovich,
    • Damien C Croteau-Chonka &
    • Karen L Mohlke
  20. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Damien C Croteau-Chonka,
    • Lu Qi &
    • David J Hunter
  21. Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Yanan Duan
  22. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

    • Tove Fall,
    • Henrik Grönberg,
    • Per Hall,
    • Patrik K E Magnusson &
    • Nancy L Pedersen
  23. Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

    • Rudolf Fehrmann,
    • Juha Karjalainen,
    • Harm-Jan Westra,
    • Joanna Smolonska,
    • Morris A Swertz,
    • Pim van der Harst &
    • Lude Franke
  24. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.

    • Teresa Ferreira,
    • Reedik Mägi,
    • Joshua C Randall,
    • Anuj Goel,
    • Inga Prokopenko,
    • Thorhildur Juliusdottir,
    • Anubha Mahajan,
    • Nigel W Rayner,
    • Neil R Robertson,
    • Martin Farrall,
    • Andrew P Morris,
    • Hugh Watkins,
    • Cecilia M Lindgren,
    • Mark I McCarthy &
    • Erik Ingelsson
  25. Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

    • Anne U Jackson,
    • Adam E Locke,
    • Heather M Stringham,
    • Michael Boehnke &
    • Goncalo R Abecasis
  26. Montreal Heart Institute, Montreal, Quebec, Canada.

    • Ken Sin Lo,
    • Jean-Claude Tardif &
    • Guillaume Lettre
  27. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

    • Evelin Mihailov &
    • Andres Metspalu
  28. Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Italy.

    • Eleonora Porcu &
    • Serena Sanna
  29. Wellcome Trust Sanger Institute, Hinxton, UK.

    • Joshua C Randall,
    • Nigel W Rayner,
    • Kathleen Stirrups,
    • Panos Deloukas &
    • Inês Barroso
  30. Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany.

    • André Scherag,
    • Sonali Pechlivanis &
    • Susanne Moebus
  31. Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.

    • André Scherag
  32. Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany.

    • Thomas W Winkler &
    • Iris M Heid
  33. Department of Nutrition, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA.

    • Tsegaselassie Workalemahu,
    • Lu Qi,
    • Paul W Franks &
    • David J Hunter
  34. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA.

    • Devin Absher &
    • Lindsay L Waite
  35. Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.

    • Eva Albrecht,
    • Janina S Ried,
    • Harald Grallert,
    • Martina Müller-Nurasyid,
    • Christian Gieger,
    • Konstantin Strauch &
    • Iris M Heid
  36. Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.

    • Denise Anderson &
    • Matthew Cooper
  37. Section on Growth and Development, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Institutes of Health, Bethesda, Maryland, USA.

    • Jeffrey Baron &
    • Julian C Lui
  38. Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden, the Netherlands.

    • Marian Beekman,
    • Joris Deelen,
    • Quinta Helmer,
    • Jeanine J Houwing-Duistermaat,
    • Diana van Heemst &
    • P Eline Slagboom
  39. Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.

    • Marian Beekman,
    • Joris Deelen &
    • P Eline Slagboom
  40. Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.

    • Ayse Demirkan
  41. Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

    • Georg B Ehret &
    • Aravinda Chakravarti
  42. Department of Specialties of Internal Medicine, Division of Cardiology, Geneva University Hospital, Geneva, Switzerland.

    • Georg B Ehret
  43. Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.

    • Bjarke Feenstra,
    • Heather A Boyd,
    • Frank Geller &
    • Mads Melbye
  44. Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Mary F Feitosa,
    • E Warwick Daw,
    • Mary K Wojczynski,
    • Qunyuan Zhang,
    • Aldi T Kraja,
    • D C Rao &
    • Ingrid B Borecki
  45. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.

    • Ross M Fraser,
    • Jennifer L Bolton,
    • Stela McLachlan,
    • Harry Campbell,
    • Jackie F Price,
    • Igor Rudan &
    • James F Wilson
  46. Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.

    • Anuj Goel,
    • Martin Farrall &
    • Hugh Watkins
  47. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

    • Jian Gong,
    • Jeffrey Haessler,
    • Charles Kooperberg &
    • Ulrike Peters
  48. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

    • Anne E Justice,
    • Keri L Monda &
    • Kari E North
  49. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

    • Stavroula Kanoni,
    • Kathleen Stirrups &
    • Panos Deloukas
  50. Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany.

    • Marcus E Kleber,
    • Graciela Delgado,
    • Tanja B Grammer &
    • Winfried März
  51. Department of Internal Medicine II, Ulm University Medical Centre, Ulm, Germany.

    • Marcus E Kleber
  52. National Institute for Health and Welfare, Helsinki, Finland.

    • Kati Kristiansson,
    • Niina Eklund,
    • Leena Kinnunen,
    • Jaana Lindström,
    • Johan G Eriksson,
    • Pekka Jousilahti,
    • Antti M Jula,
    • Jaakko Kaprio,
    • Seppo Koskinen,
    • Satu Männistö,
    • Veikko Salomaa,
    • Jarmo Virtamo,
    • Markus Perola &
    • Jaakko Tuomilehto
  53. Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA.

    • Unhee Lim,
    • Lynne R Wilkens &
    • Loic Le Marchand
  54. Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

    • Vaneet Lotay,
    • Janina Jeff,
    • Yingchang Lu,
    • Omri Gottesman,
    • Erwin P Bottinger &
    • Ruth J F Loos
  55. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.

    • Massimo Mangino,
    • Cristina Menni,
    • Alireza Moayyeri &
    • Tim D Spector
  56. Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

    • Irene Mateo Leach,
    • Hans L Hillege,
    • Niek Verweij &
    • Pim van der Harst
  57. Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands.

    • Carolina Medina-Gomez,
    • Albert Hofman,
    • Manfred Kayser,
    • Fernando Rivadeneira,
    • André G Uitterlinden &
    • Cornelia M van Duijn
  58. Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.

    • Carolina Medina-Gomez,
    • Albert Hofman,
    • Fernando Rivadeneira,
    • André G Uitterlinden &
    • Cornelia M van Duijn
  59. Laboratory of Neurogenetics, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA.

    • Michael A Nalls
  60. QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

    • Dale R Nyholt,
    • Anjali K Henders,
    • Grant W Montgomery &
    • Nicholas G Martin
  61. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.

    • Inga Prokopenko,
    • Amy Barrett,
    • Amanda J Bennett,
    • Christopher J Groves,
    • Nigel W Rayner,
    • Neil R Robertson &
    • Mark I McCarthy
  62. Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK.

    • Inga Prokopenko &
    • Philippe Froguel
  63. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.

    • Stephan Ripke
  64. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital, Malmö, Sweden.

    • Dmitry Shungin,
    • Frida Renstrom &
    • Paul W Franks
  65. Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden.

    • Dmitry Shungin &
    • Paul W Franks
  66. Department of Odontology, Umeå University, Umeå, Sweden.

    • Dmitry Shungin
  67. Department of Medicine, University of Eastern Finland, Kuopio, Finland.

    • Alena Stancáková
  68. Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.

    • Rona J Strawbridge,
    • Lasse Folkersen &
    • Anders Hamsten
  69. Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Yun Ju Sung,
    • D C Rao &
    • Treva K Rice
  70. Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA.

    • Toshiko Tanaka &
    • Luigi Ferrucci
  71. Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

    • Alexander Teumer
  72. Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.

    • Stella Trompet &
    • J Wouter Jukema
  73. Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.

    • Stella Trompet &
    • Diana van Heemst
  74. Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Sander W van der Laan,
    • Hester M den Ruijter &
    • Gerard Pasterkamp
  75. Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Jessica van Setten &
    • Paul I W de Bakker
  76. Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

    • Jana V Van Vliet-Ostaptchouk
  77. DZHK (Deutsches Zentrum für Herz-Kreislaufforschung–German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.

    • Zhaoming Wang,
    • Marcus Dörr,
    • Wolfgang Hoffmann,
    • Matthias Nauck &
    • Henry Völzke
  78. Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.

    • Zhaoming Wang,
    • Anke Hannemann &
    • Matthias Nauck
  79. Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.

    • Zhaoming Wang,
    • Kevin B Jacobs,
    • Stephen J Chanock &
    • Sonja I Berndt
  80. Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA.

    • Zhaoming Wang &
    • Kevin B Jacobs
  81. CNRS UMR 8199, Lille, France.

    • Loïc Yengo,
    • Elodie Eury,
    • Stéphane Lobbens,
    • Stéphane Cauchi &
    • Philippe Froguel
  82. European Genomic Institute for Diabetes, Lille, France.

    • Loïc Yengo,
    • Elodie Eury,
    • Stéphane Lobbens,
    • Stéphane Cauchi &
    • Philippe Froguel
  83. Université de Lille 2, Lille, France.

    • Loïc Yengo,
    • Elodie Eury,
    • Stéphane Lobbens,
    • Stéphane Cauchi &
    • Philippe Froguel
  84. Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK.

    • Weihua Zhang,
    • Uzma Afzal,
    • Laticia Oozageer,
    • Joban Sehmi,
    • Jaspal S Kooner &
    • John C Chambers
  85. Department of Epidemiology and Biostatistics, Imperial College London, London, UK.

    • Weihua Zhang,
    • Uzma Afzal,
    • Joban Sehmi,
    • Marjo-Riitta Jarvelin &
    • John C Chambers
  86. School of Health and Social Studies, Dalarna University, Falun, Sweden.

    • Johan Ärnlöv
  87. PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia.

    • Gillian M Arscott,
    • John Beilby &
    • Jennie Hui
  88. Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy.

    • Stefania Bandinelli
  89. Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.

    • Claire Bellis &
    • John Blangero
  90. Department of Medical Sciences, Endocrinology, Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.

    • Christian Berne
  91. Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany.

    • Matthias Blüher,
    • Yvonne Böttcher,
    • Peter Kovacs,
    • Anke Tönjes &
    • Michael Stumvoll
  92. Department of Medicine, University of Leipzig, Leipzig, Germany.

    • Matthias Blüher,
    • Peter Kovacs,
    • Anke Tönjes &
    • Michael Stumvoll
  93. LifeLines, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

    • Marcel Bruinenberg
  94. Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.

    • Brendan M Buckley
  95. Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersy, USA.

    • Steven Buyske
  96. Department of Genetics, Rutgers University, Piscataway, New Jersey, USA.

    • Steven Buyske &
    • Tara C Matise
  97. Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.

    • Ida H Caspersen &
    • Berit Johansen
  98. Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.

    • Peter S Chines,
    • Mario A Morken,
    • Narisu Narisu &
    • Francis S Collins
  99. Clinical Trial Service Unit, Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

    • Robert Clarke &
    • Rory Collins
  100. Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm, Germany.

    • Simone Claudi-Boehm,
    • Sigrun Merger &
    • Bernhard O Boehm
  101. Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Pim A De Jong
  102. Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA.

    • Josh C Denny
  103. Department of Human Nutrition, Wageningen University, Wageningen, the Netherlands.

    • Rosalie Dhonukshe-Rutten &
    • Lisette C P G M de Groot
  104. Department of Dietetics–Nutrition, Harokopio University, Athens, Greece.

    • Maria Dimitriou &
    • George Dedoussis
  105. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.

    • Alex S F Doney,
    • Andrew D Morris &
    • Colin N A Palmer
  106. Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.

    • Marcus Dörr
  107. Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland.

    • Niina Eklund,
    • Jaakko Kaprio,
    • Leif C Groop &
    • Markus Perola
  108. Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA.

    • Melissa E Garcia &
    • Tamara B Harris
  109. Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.

    • Vilmantas Giedraitis
  110. Kaiser Permanente, Division of Research, Oakland, California, USA.

    • Alan S Go
  111. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.

    • Harald Grallert,
    • Thomas Illig,
    • Norman Klopp,
    • Melanie Waldenberger &
    • Annette Peters
  112. German Center for Diabetes Research (DZD), Neuherberg, Germany.

    • Harald Grallert
  113. Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

    • Jürgen Gräßler,
    • Stefan R Bornstein &
    • Peter E H Schwarz
  114. Unit of Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.

    • Goran Hallmans
  115. Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

    • Catharina A Hartman &
    • Albertine J Oldehinkel
  116. Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.

    • Maija Hassinen,
    • Timo A Lakka &
    • Rainer Rauramaa
  117. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK.

    • Caroline Hayward &
    • Alan F Wright
  118. National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, USA.

    • Nancy L Heard-Costa,
    • L Adrienne Cupples &
    • Caroline S Fox
  119. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.

    • Nancy L Heard-Costa
  120. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands.

    • Quinta Helmer &
    • Jeanine J Houwing-Duistermaat
  121. Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, the Netherlands.

    • Quinta Helmer
  122. Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

    • Hans L Hillege,
    • Ilja M Nolte,
    • Salome Scholtens,
    • Joanna Smolonska,
    • Judith M Vonk,
    • Ronald P Stolk &
    • Harold Snieder
  123. Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.

    • Mark A Hlatky,
    • Themistocles L Assimes,
    • Mads Melbye &
    • Thomas Quertermous
  124. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

    • Wolfgang Hoffmann &
    • Henry Völzke
  125. Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, Switzerland.

    • Per Hoffmann
  126. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.

    • Per Hoffmann &
    • Markus M Nöthen
  127. Institute of Human Genetics, University of Bonn, Bonn, Germany.

    • Per Hoffmann &
    • Markus M Nöthen
  128. Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway.

    • Oddgeir Holmen &
    • Kristian Hveem
  129. Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.

    • Thomas Illig &
    • Norman Klopp
  130. Center for Medical Systems Biology, Leiden, the Netherlands.

    • Aaron Isaacs,
    • Ben A Oostra &
    • Cornelia M van Duijn
  131. Department of Pulmonary Physiology and Sleep Medicine, Nedlands, Western Australia, Australia.

    • Alan L James
  132. School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.

    • Alan L James
  133. Department of Immunology, Genetics and Pathology, SciLifeLab, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.

    • Åsa Johansson &
    • Ulf Gyllensten
  134. Department of Haematology, University of Cambridge, Cambridge, UK.

    • Jennifer Jolley &
    • Willem H Ouwehand
  135. NHS Blood and Transplant, Cambridge, UK.

    • Jennifer Jolley &
    • Willem H Ouwehand
  136. Department of Medicine, University of Oulu, Oulu, Finland.

    • Juhani Junttila
  137. Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

    • Abel N Kho &
    • M Geoffrey Hayes
  138. Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany.

    • Thomas Kocher
  139. Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany.

    • Wolfgang Kratzer &
    • Thomas Seufferlein
  140. Institute of Human Genetics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.

    • Peter Lichtner
  141. Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.

    • Lars Lind &
    • Johan Sundström
  142. Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

    • Mattias Lorentzon &
    • Claes Ohlsson
  143. Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

    • Yingchang Lu &
    • Ruth J F Loos
  144. Steno Diabetes Center A/S, Gentofte Denmark.

    • Valeriya Lyssenko
  145. Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland.

    • Marc Maillard
  146. School of Social and Community Medicine, University of Bristol, Bristol, UK.

    • Wendy L McArdle
  147. Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica.

    • Colin A McKenzie &
    • Terrence Forrester
  148. Global Health Institute, Department of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

    • Paul J McLaren
  149. Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland.

    • Paul J McLaren
  150. Center for Observational Research, Amgen, Inc., Thousand Oaks, California, USA.

    • Keri L Monda
  151. Center for Evidence-Based Healthcare, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

    • Gabriele Müller
  152. Department of Medicine I, University Hospital Großhadern, Ludwig Maximilians Universität, Munich, Germany.

    • Martina Müller-Nurasyid
  153. Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians Universität, Neuherberg, Germany.

    • Martina Müller-Nurasyid &
    • Konstantin Strauch
  154. DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen–German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.

    • Martina Müller-Nurasyid,
    • Heribert Schunkert,
    • Christian Hengstenberg,
    • Thomas Meitinger &
    • Annette Peters
  155. Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.

    • Arthur W Musk
  156. Department of Epidemiology and Biostatistics, Institute for Research in Extramural Medicine (EMGO) Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands.

    • Stefan Pilz &
    • Natasja M van Schoor
  157. Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria.

    • Stefan Pilz
  158. Diabetology-Endocrinology-Nutrition, Public Hospital System of the City of Paris (AP-HP), Bichat Hospital, Paris, France.

    • Ronan Roussel
  159. INSERM U872, Centre de Recherche des Cordeliers, Paris, France.

    • Ronan Roussel
  160. Paris Diderot University, Paris, France.

    • Ronan Roussel
  161. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.

    • Hubert Scharnagl &
    • Winfried März
  162. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

    • Fredrick R Schumacher &
    • Christopher A Haiman
  163. Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.

    • Heribert Schunkert &
    • Christian Hengstenberg
  164. National Cancer Institute, Bethesda, Maryland, USA.

    • Jianxin Shi
  165. Department of Sociology, University of Helsinki, Helsinki, Finland.

    • Karri Silventoinen
  166. EMGO Institute for Health and Care Research, VU University, Amsterdam, the Netherlands.

    • Johannes H Smit
  167. Department of Psychiatry, Neuroscience Campus, VU University Amsterdam, Amsterdam, the Netherlands.

    • Johannes H Smit
  168. Icelandic Heart Association, Kopavogur, Iceland.

    • Albert Vernon Smith &
    • Vilmundur Gudnason
  169. University of Iceland, Reykjavik, Iceland.

    • Albert Vernon Smith &
    • Vilmundur Gudnason
  170. Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.

    • Alice V Stanton
  171. Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK.

    • David J Stott
  172. Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala, Sweden.

    • Ann-Christine Syvänen
  173. Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA.

    • Bamidele O Tayo &
    • Richard S Cooper
  174. deCODE Genetics, Amgen, Inc., Reykjavik, Iceland.

    • Gudmar Thorleifsson,
    • Valgerdur Steinthorsdottir,
    • Unnur Thorsteinsdottir &
    • Kari Stefansson
  175. Department of Oncology, University of Cambridge, Cambridge, UK.

    • Jonathan P Tyrer
  176. Section of Geriatrics, Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands.

    • Nathalie van der Velde
  177. Department of Child and Adolescent Psychiatry, Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands.

    • Floor V A van Oort
  178. Department for Health Evidence, Radboud University Medical Centre, Nijmegen, the Netherlands.

    • Sita H Vermeulen &
    • Lambertus A Kiemeney
  179. Department of Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.

    • Sita H Vermeulen
  180. Department of Clinical Chemistry, Ulm University Medical Centre, Ulm, Germany.

    • Roman Wennauer
  181. DZHK (Deutsches Forschungszentrum für Herz-Kreislauferkrankungen–German Research Centre for Cardiovascular Research), partner site Hamburg-Lubeck-Kiel, Lubeck, Germany.

    • Christina Willenborg &
    • Jeanette Erdmann
  182. Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany.

    • Christina Willenborg &
    • Jeanette Erdmann
  183. Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Tromsø, Tromsø, Norway.

    • Tom Wilsgaard &
    • Inger Njølstad
  184. MRC Unit for Lifelong Health and Ageing at University College London, London, UK.

    • Andrew Wong,
    • Ken K Ong &
    • Diana Kuh
  185. Department of Epidemiology and Public Health, University of Strasbourg, Faculty of Medicine, Strasbourg, France.

    • Dominique Arveiler
  186. Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

    • Stephan J L Bakker &
    • Ron T Gansevoort
  187. Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia.

    • John Beilby &
    • Jennie Hui
  188. Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California, USA.

    • Richard N Bergman
  189. Department of Prosthetic Dentistry, Gerostomatology and Dental Materials, University Medicine Greifswald, Greifswald, Germany.

    • Reiner Biffar
  190. Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands.

    • Dorret I Boomsma
  191. Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.

    • Pascal Bovet &
    • Murielle Bochud
  192. Ministry of Health, Victoria, Republic of Seychelles.

    • Pascal Bovet &
    • Murielle Bochud
  193. Laboratory Medicine, Hospital of Desio, Department of Health Sciences, University of Milano, Bicocca, Italy.

    • Paolo Brambilla
  194. Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.

    • Morris J Brown
  195. Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

    • Mark J Caulfield &
    • Patricia B Munroe
  196. Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

    • Mark J Caulfield &
    • Patricia B Munroe
  197. Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

    • Dana C Crawford
  198. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.

    • Dana C Crawford
  199. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.

    • L Adrienne Cupples
  200. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

    • John Danesh &
    • Danish Saleheen
  201. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

    • Ulf de Faire
  202. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Hester M den Ruijter
  203. Clinic of Cardiology, West German Heart Centre, University Hospital Essen, Essen, Germany.

    • Raimund Erbel
  204. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.

    • Johan G Eriksson
  205. Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland.

    • Johan G Eriksson
  206. Department of Internal Medicine, University of Pisa, Pisa, Italy.

    • Ele Ferrannini
  207. National Research Council (CNR) Institute of Clinical Physiology, University of Pisa, Pisa, Italy.

    • Ele Ferrannini
  208. Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France.

    • Jean Ferrières
  209. Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.

    • Ian Ford
  210. NorthShore University HealthSystem, University of Chicago, Evanston, Illinois, USA.

    • Pablo V Gejman
  211. Service of Therapeutic Education for Diabetes, Obesity and Chronic Diseases, Geneva University Hospital, Geneva, Switzerland.

    • Alain Golay
  212. Department of Medicine, Pharmacology, Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

    • David W Haas
  213. Leeds MRC Medical Bioinformatics Centre, University of Leeds, Leeds, UK.

    • Alistair S Hall
  214. Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK.

    • Andrew T Hattersley
  215. Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Andrew C Heath,
    • Pamela A F Madden,
    • D C Rao &
    • Treva K Rice
  216. Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany).

    • Andrew A Hicks &
    • Peter P Pramstaller
  217. Division of Genomic Medicine, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.

    • Lucia A Hindorff
  218. Institute of Cardiovascular Science, University College London, London, UK.

    • Aroon D Hingorani &
    • Folkert W Asselbergs
  219. Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.

    • G Kees Hovingh &
    • John J P Kastelein
  220. Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London, UK.

    • Steve E Humphries
  221. Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.

    • Steven C Hunt
  222. School of Population Health, University of South Australia, Adelaide, South Australia, Australia.

    • Elina Hypponen &
    • Jennie Hui
  223. Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.

    • Elina Hypponen &
    • Jennie Hui
  224. South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.

    • Elina Hypponen
  225. Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, London, UK.

    • Elina Hypponen &
    • Chris Power
  226. National Institute for Health and Welfare, Oulu, Finland.

    • Marjo-Riitta Jarvelin
  227. MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.

    • Marjo-Riitta Jarvelin
  228. Unit of Primary Care, Oulu University Hospital, Oulu, Finland.

    • Marjo-Riitta Jarvelin
  229. Biocenter Oulu, University of Oulu, Oulu, Finland.

    • Marjo-Riitta Jarvelin
  230. Institute of Health Sciences, University of Oulu, Oulu, Finland.

    • Marjo-Riitta Jarvelin &
    • Sylvain Sebert
  231. Hjelt Institute Department of Public Health, University of Helsinki, Helsinki, Finland.

    • Jaakko Kaprio
  232. Department of Forensic Molecular Biology, Erasmus Medical Center, Rotterdam, the Netherlands.

    • Manfred Kayser
  233. UK Clinical Research Collaboration Centre of Excellence for Public Health (Northern Ireland), Queens University of Belfast, Belfast, UK.

    • Frank Kee
  234. Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland.

    • Sirkka M Keinanen-Kiukaanniemi
  235. Unit of General Practice, Oulu University Hospital, Oulu, Finland.

    • Sirkka M Keinanen-Kiukaanniemi
  236. Department of Urology, Radboud University Medical Centre, Nijmegen, the Netherlands.

    • Lambertus A Kiemeney
  237. Imperial College Healthcare NHS Trust, London, UK.

    • Jaspal S Kooner &
    • John C Chambers
  238. National Heart and Lung Institute, Imperial College London, London, UK.

    • Jaspal S Kooner
  239. Department of Epidemiology and Public Health, University College London, London, UK.

    • Meena Kumari,
    • Claudia Langenberg &
    • Mika Kivimaki
  240. Department of Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.

    • Johanna Kuusisto &
    • Markku Laakso
  241. Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.

    • Timo A Lakka
  242. Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.

    • Timo A Lakka &
    • Rainer Rauramaa
  243. Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland.

    • Terho Lehtimäki
  244. Department of Health Sciences, University of Milano, Milan, Italy.

    • Sara Lupoli
  245. Fondazione Filarete, Milan, Italy.

    • Sara Lupoli
  246. Division of Nephrology and Dialysis, San Raffaele Scientific Institute, Milan, Italy.

    • Paolo Manunta
  247. Università Vita–Salute San Raffaele, Milan, Italy.

    • Paolo Manunta
  248. Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada.

    • André Marette
  249. Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada.

    • André Marette,
    • Marie-Claude Vohl &
    • Louis Pérusse
  250. Department of Biostatistics, University of Washington, Seattle, Washington, USA.

    • Barbara McKnight
  251. Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Frans L Moll
  252. Department of Biostatistics, University of Liverpool, Liverpool, UK.

    • Andrew P Morris
  253. Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.

    • Jeffrey C Murray
  254. Institute of Epidemiology II, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.

    • Annette Peters
  255. Department of Neurology, General Central Hospital, Bolzano, Italy.

    • Peter P Pramstaller
  256. Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland.

    • Olli T Raitakari
  257. Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.

    • Olli T Raitakari
  258. Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.

    • Tuomo Rankinen,
    • Mark A Sarzynski &
    • Claude Bouchard
  259. Center for Systems Genomics, Pennsylvania State University, University Park, Pennsylvania, USA.

    • Marylyn Ritchie
  260. Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia.

    • Igor Rudan
  261. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK.

    • Nilesh J Samani
  262. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.

    • Nilesh J Samani
  263. South Carelia Central Hospital, Lappeenranta, Finland.

    • Jouko Saramies
  264. Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany.

    • Peter E H Schwarz
  265. International Centre for Circulatory Health, Imperial College London, London, UK.

    • Peter Sever
  266. Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.

    • Alan R Shuldiner &
    • Jeffrey R O'Connell
  267. Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.

    • Alan R Shuldiner &
    • Jeffrey R O'Connell
  268. Geriatric Research and Education Clinical Center, Vetrans Administration Medical Center, Baltimore, Maryland, USA.

    • Alan R Shuldiner
  269. Helsinki University Central Hospital Heart and Lung Center, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.

    • Juha Sinisalo
  270. Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.

    • Jean-Claude Tardif &
    • Guillaume Lettre
  271. Department of Kinesiology, Laval University, Quebec City, Quebec, Canada.

    • Angelo Tremblay &
    • Louis Pérusse
  272. Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano and Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.

    • Elena Tremoli
  273. Department of Food Science and Nutrition, Laval University, Quebec City, Quebec, Canada.

    • Marie-Claude Vohl
  274. A full list of members and affiliations appears in the Supplementary Note.

    • $affiliationAuthor
  275. Institut Pasteur de Lille, INSERM U744, Université de Lille 2, Lille, France.

    • Philippe Amouyel
  276. Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Folkert W Asselbergs
  277. Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands–Netherlands Heart Institute, Utrecht, the Netherlands.

    • Folkert W Asselbergs,
    • J Wouter Jukema &
    • Pim van der Harst
  278. Lee Kong Chian School of Medicine, Imperial College London and Nanyang Technological University, Singapore.

    • Bernhard O Boehm
  279. Health Science Center at Houston, University of Texas, Houston, Texas, USA.

    • Eric Boerwinkle
  280. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

    • Paul I W de Bakker
  281. Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Paul I W de Bakker
  282. Lund University Diabetes Centre, Lund University, Malmö, Sweden.

    • Leif C Groop
  283. Diabetes and Endocrinology Unit, Department of Clinical Science, Lund University, Malmö, Sweden.

    • Leif C Groop
  284. Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA.

    • David J Hunter &
    • Alkes L Price
  285. Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, the Netherlands.

    • J Wouter Jukema
  286. Department of Epidemiology and Population Health, Albert Einstein College of Medicine. Belfer, New York, USA.

    • Robert C Kaplan
  287. Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Yongmei Liu
  288. Synlab Academy, Synlab Services, Mannheim, Germany.

    • Winfried März
  289. Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.

    • Ben A Oostra
  290. Harvard Medical School, Boston, Massachusetts, USA.

    • Paul M Ridker &
    • Daniel I Chasman
  291. Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor–University of California, Los Angeles Medical Center, Torrance, California, USA.

    • Jerome I Rotter
  292. Finnish Diabetes Association, Tampere, Finland.

    • Timo E Saaristo
  293. Pirkanmaa Hospital District, Tampere, Finland.

    • Timo E Saaristo
  294. Center for Non-Communicable Diseases, Karatchi, Pakistan.

    • Danish Saleheen
  295. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

    • Danish Saleheen
  296. Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA.

    • David Schlessinger
  297. Instituto de Investigacion Sanitaria del Hospital Universario La Paz (IdiPAZ), Madrid, Spain.

    • Jaakko Tuomilehto
  298. Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

    • Jaakko Tuomilehto
  299. Centre for Vascular Prevention, Danube University Krems, Krems, Austria.

    • Jaakko Tuomilehto
  300. Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.

    • Matti Uusitupa
  301. Research Unit, Kuopio University Hospital, Kuopio, Finland.

    • Matti Uusitupa
  302. Institute of Cellular Medicine, Newcastle University, Newcastle, UK.

    • Mark Walker
  303. Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians Universität, Munich, Germany.

    • H-Erich Wichmann
  304. Klinikum Großhadern, Munich, Germany.

    • H-Erich Wichmann
  305. Institute of Epidemiology I, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany.

    • H-Erich Wichmann
  306. Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Pieter Zanen
  307. King Abdulaziz University, Jeddah, Saudi Arabia.

    • Panos Deloukas
  308. Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA.

    • Elizabeth K Speliotes
  309. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

    • Elizabeth K Speliotes &
    • Cristen J Willer
  310. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

    • Unnur Thorsteinsdottir &
    • Kari Stefansson
  311. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.

    • Inês Barroso
  312. NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.

    • Inês Barroso
  313. Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

    • Kari E North
  314. Division of Population Health Sciences and Education, St George's, University of London, London, UK.

    • David P Strachan
  315. Service of Medical Genetics, CHUV University Hospital, Lausanne, Switzerland.

    • Jacques S Beckmann
  316. Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, UK.

    • Mark I McCarthy
  317. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA.

    • Cristen J Willer
  318. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.

    • Cristen J Willer
  319. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.

    • Alkes L Price
  320. Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

    • Ruth J F Loos
  321. Biosciences Research Division, Department of Primary Industries, Melbourne, Victoria, Australia.

    • Michael E Goddard
  322. Department of Food and Agricultural Systems, University of Melbourne, Melbourne, Victoria, Australia.

    • Michael E Goddard

Consortia

  1. The Electronic Medical Records and Genomics (eMERGE) Consortium

  2. The MIGen Consortium

  3. The PAGE Consortium

  4. The LifeLines Cohort Study

Contributions

Steering committee overseeing the consortium: G.R.A., T.L.A., I.B., S.I.B., M. Boehnke, I.B.B., P.D., C.S.F., T.M.F., L.C.G., I.M.H., J.N.H., D.J.H., E.I., R.C.K., R.J.F.L., M.I.M., K.L. Mohlke, K.E.N., J.R.O., D. Schlessinger, D.P.S., U.T. and C.M.v.D. Writing group (wrote, edited and commented on the manuscript): S.I.B., D.I.C., A.Y.C., T.E., T.M.F., J.N.H., E.I., T.H.P., S.V., P.M.V., M.N.W., A.R.W. and J.Y. Data preparation group (checked and prepared data from contributing cohorts for meta-analyses): D.C.C.-C., F.R.D., T.E., T. Fall, T. Ferreira, S.G., I.M.H., Z.K., C.M.L., A.E.L., R.J.F.L., J. Luan, R.M., J.C.R., A. Scherag, E.K.S., S.V., T.W.W., A.R.W. and T. Workalemahu. Height meta-analyses group (GWAS and Metabochip) (analyses specific to the manuscript): T.E., T.M.F. (chair), S.V., P.M.V., A.R.W. (lead meta-analyses) and J.Y. (lead joint-effects and approximate conditional analyses). Mixed linear model analyses: J.S.B., M. Boehnke, D.I.C., A.Y.C., K.E., T.M.F. (chair), S.G., J.N.H., J.H.Z., E.I., A.U.J., Z.K., R.J.F.L., J. Luan, A. Metspalu, E.M., J.R.O., A.L.P., A.G.U., S.V., P.M.V., M.N.W., A.R.W. (lead) and J.Y. Large λ group: T.M.F., J.N.H., P.M.V., M.E. Goddard, A.L.P., M.N.W., J.Y. and G.R.A. Family transmission analyses: G.R.A., N.A., I.B.B., Y.D., C.M.v.D., J.N.H. (chair), E.I., J.R.O., E.P., S.V. (lead), P.M.V. and J.Y. Variance, heritability and prediction analyses: K.E., M.E. Goddard, M.I.M., A.A.E.V., P.M.V. (chair), M.N.W., A.R.W. and J.Y. (lead). Biological enrichment and pathway analyses: T.E. (lead biological enrichment analyses), J.N.H. (chair) and T.H.P. (lead pathway analyses). ENCODE working group: M.L.B., G.L. (chair) and K.S.L. Gene expression (eQTL) working group: J. Baron, T.E. (chair), L. Franke, J. Karjalainen, J.C.L., A. Metspalu, E.R., J.E.P. and H.-J.W. (lead). Other contributions: (DEPICT) R.F., L. Franke, J. Karjalainen and T.H.P.

Project design, management and coordination of contributing studies

Previous GWAS: (AGES) V. Gudnason, T.B.H.; (AMISH) A.R.S.; (ARIC) K.E.N.; (B58C T1D CONTROLS) D.P.S.; (B58C WTCCC) D.P.S.; (BRIGHT) M.J.B., N.J.S.; (CAPS) E.I.; (CHS) J.I.R.; (COLAUS) J.S.B., S. Bergmann; (CROATIA-Vis) I.R.; (deCODE) K. Stefansson, U.T.; (DGI) L.C.G.; (EGCUT) A. Metspalu; (EPIC-Norfolk) N.J.W.; (FENLAND) N.J.W.; (Finnish Twin Cohort) J. Kaprio, K. Silventoinen; (FRAM) L.A.C.; (FUSION) R.N.B., M. Boehnke; (GerMIFS I) J.E., C. Hengstenberg; (GerMIFS II) H. Schunkert; (H2000) S. Koskinen; (HFPS) D.J.H.; (KORA S4) C.G., A.P.; (MICROS) A.A.H., P.P.P.; (NFBC66) M.-R.J., S. Sebert; (NHS) D.J.H.; (NSPHS) U.G.; (NTRNESDA) D.I.B.; (ORCADES) H.C.; (PLCO) S.I.B., S.J.C.; (RS I) C.M.v.D., A. Hofman, M. Kayser, F. Rivadeneira, A.G.U.; (RUNMC) L.A.K.; (SardiNIA) G.R.A.; (SASBAC) E.I.; (SHIP) R.B., H.V.; (WGHS) P.M.R.; (WTCCC-CAD) A.S.H., N.J.S.; (WTCCC-T2D) C.M.L., M.I.M.; (Young Finns Study (YFS)) T.L., O.T.R.

New GWAS: (ASCOT) M.J.C., P.S.; (ATCG) P.I.W.d.B., D.W.H.; (Athero-Express Biobank Studies) F.W.A., H.M.d.R., F.L.M., G.P.; (B-PROOF) R.D.-R., L.C.P.G.M.d.G., N.M.v.S., N.v.d.V.; (BLSA) L. Ferrucci; (CLHNS) K.L. Mohlke; (COROGENE) M.P., J. Sinisalo; (DESIR) S.C., P.F.; (DNBS) M. Melbye, J.C.M.; (EGCUT) A. Metspalu; (eMERGE) M.G.H.; (ERF) B.A.O., C.M.v.D.; (FamHS) I.B.B.; (FINGESTURE) J.-C.T.; (GOOD) C.O.; (HBCS) J.G.E.; (Health ABC) T.B.H., Y. Liu; (HERITAGE Family Study) C. Bouchard, D.C.R., M.A. Sarzynski; (InCHIANTI) L. Ferrucci, T.M.F.; (IPM) E.P.B., R.J.F.L.; (LLS) P.E.S.; (LOLIPOP) J.C.C., J.S.K.; (MGS) P.V.G.; (NELSON) P.I.W.d.B., P.Z.; (PLCO2) S.I.B., S.J.C.; (PREVEND) P.v.d.H.; (PROCARDIS) H.W.; (PROSPER/PHASE) I.F., J.W.J.; (QFS) C. Bouchard, A. Marette, L.P., M.-C.V.; (QIMR) A.C.H., N.G.M., G.W.M.; (RISC) E.F., T.M.F., A. Golay, M. Walker; (RS II) A. Hofman, M. Kayser, F. Rivadeneira, A.G.U.; (RS III) A. Hofman, M. Kayser, F. Rivadeneira, A.G.U.; (SHIP-TREND) R.B., H.V.; (SORBS) A. Tönjes; (TRAILS) A.J.O., H. Snieder; (TWINGENE) E.I.; (TwinsUK) T.D.S.

Metabochip studies: (ADVANCE) T.L.A., T.Q.; (AMC-PAS) G.K.H., P.D.; (ARIC) E.B., K.E.N.; (B1958C) E.H., C.P.; (BHS) J. Beilby, J. Hui; (CARDIOGENICS) P.D., W.H.O., H. Schunkert; (DESIR) S.C., P.F.; (DGE DietGeneExpression) B.J.; (DIAGEN) S.R.B., P.E.H.S.; (DILGOM) P.J., A.M.J., S. Männistö, M.P., V. Salomaa; (DPS) M.U.; (DR's EXTRA) T.A.L., R. Rauramaa; (DUNDEE-GoDARTS) C.N.A.P.; (EAS) J.F.P.; (EGCUT) A. Metspalu; (EMIL (SWABIA)) B.O.B.; (FBPP) A.C., R.S.C., S.C.H.; (FIN-D2D 2007) S.M.K.-K., T.E.S.; (FUSION 2) F.S.C., J. Saramies, J.T.; (GLACIER) P.W.F.; (GxE) R.S.C., J.N.H., C.A.M.; (HNR) R.E., P. Hoffmann, S. Moebus; (HUNT 2) K.H.; (IMPROVE) U.d.F., A. Hamsten, S.E.H., E.T.; (KORA S3) T.M., H.-E.W.; (KORA S4) K. Strauch; (Leipzig) M.S.; (LURIC) W.M.; (MEC) C.A. Haiman, L.L.M.; (METSIM) J. Kuusisto, M. Laakso; (MORGAM) P.A., D. Arveiler, P. Brambilla, J.F., F.K., J.V.; (NSHD) D.K.; (PIVUS) E.I.; (PROMIS) J. Danesh, P.D., D. Saleheen; (ScarfSheep) A. Hamsten; (SPT) R.S.C., J.N.H., C.A.M.; (STR) E.I., (Tandem) M. Bochud, P. Bovet; (THISEAS) G. Dedoussis, P.D.; (Tromsø) I.N.; (ULSAM) E.I.; (WHI) T.C.M., C.K., U.P.; (Whitehall) A.D.H., M. Kivimaki, N.J.W.; (WTCCC-T2D) C.M.L., M.I.M.

Genotyping of contributing studies

Previous GWAS: (AGES) A.V. Smith; (B58C T1D CONTROLS) W.L.M.; (B58C WTCCC) W.L.M.; (CAPS) H. Grönberg; (CROATIA-Vis) C. Hayward; (EGCUT) M. Nelis; (EPIC-Norfolk) N.J.W.; (FENLAND) N.J.W.; (Finnish Twin Cohort) J. Kaprio; (KORA S3) T.I., M.M.-N.; (MICROS) A.A.H.; (NFBC66) M.-R.J.; (ORCADES) A.F.W.; (PLCO) S.J.C.; (RS I) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (SASBAC) P. Hall; (SHIP) A. Hannemann, M. Nauck; (WGHS) D.I.C., L.M.R.; (WTCCC-CAD) A.S.H., N.J.S.; (WTCCC-T2D) A.T.H., M.I.M.; (Young Finns Study (YFS)) T.L., O.T.R.

New GWAS: (ASCOT) P.B.M.; (ATCG) P.I.W.d.B., D.W.H., P.J.M.; (Athero-Express Biobank Study) S.W.v.d.L.; (CLHNS) D.C.C.-C.; (DESIR) E.E., S. Lobbens; (EGCUT) T.E., L.M.; (eMERGE) D.C.C., M.G.H.; (ERF) A.I., B.A.O., C.M.v.D.; (FamHS) I.B.B., E.W.D., M.F.F., A.T.K., M.K.W., Q.Z.; (GOOD) C.O., M. Lorentzon; (Health ABC) Y. Liu; (HERITAGE Family Study) M.A. Sarzynski; (HYPERGENES) S. Lupoli.; (IPM) E.P.B.; (LifeLines) M.A. Swertz; (LLS) J. Deelen, Q.H.; (LOLIPOP) J.C.C., J.S.K.; (NELSON) J. Smolonska; (PLCO2) S.J.C., K.B.J., Z.W.; (PREVEND) P.v.d.H., I.M.L.; (PROCARDIS) M.F., A. Goel; (PROSPER/PHASE) J.W.J., D.J.S., S.T.; (QFS) C. Bellis, J. Blangero; (QIMR) A.K.H.; (SHIP-TREND) A. Hannemann, M. Nauck; (RS II) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (RS III) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (TRAILS) M. Bruinenberg, C.A. Hartman; (TWINGENE) A. Hamsten, N.L.P.; (TwinsUK) M. Mangino, A. Moayyeri; (WGHS) D.I.C., L.M.R.

Metabochip studies: (ADVANCE) D. Absher, T.L.A., T.Q.; (AMCPAS) K. Stirrups; (ARIC) E.B., K.E.N.; (B1958C) N.R.R., C.J.G., T.J.; (BHS) G.M.A., J. Hui; (CARDIOGENICS) K. Stirrups; (DESIR) E.E., S. Lobbens; (DGE DietGeneExpression) B.J.; (DIAGEN) M.A.M.; (DUNDEE-GoDARTS) A.J.B., C.N.A.P., N.W.R.; (EAS) J.F.W.; (EGCUT) T.E., L.M.; (ELY) N.G.F., C.L., R.J.F.L., K.K.O., R.A.S., N.J.W.; (EMIL (SWABIA)) B.O.B.; (EPIC-Norfolk) N.G.F., C.L., R.J.F.L., K.K.O., R.A.S., N.J.W.; (FBPP) A.C.; (FENLAND) N.G.F., C.L., R.J.F.L., K.K.O., R.A.S., N.J.W.; (FIN-D2D 2007) P.S.C.; (FUSION 2) L.K.; (GLACIER) I.B.; (HNR) M.M.N.; (HUNT 2) N.N.; (KORA S3) N.K., M. Waldenberger; (KORA S4) H. Grallert, P.L.; (Leipzig) Y.B., P.K.; (LURIC) M.E.K.; (MEC) C.A. Haiman, L.A.H.; (NSHD) D.K., K.K.O., A.W.; (PIVUS) E.I., C. Berne, L.L., J. Sundström; (PROMIS) K. Stirrups; (STR) N.L.P.; (Tandem) G.B.E., M. Maillard; (THISEAS) K. Stirrups; (Tromsø) P.S.C.; (ULSAM) J.Ä., E.I., A.-C.S.; (WHI) C.K., U.P.; (Whitehall) C.L.; (WTCCC-T2D) A.T.H., M.I.M.

Phenotype coordination of contributing studies

Previous GWAS: (AMISH) A.R.S.; (B58C T1D CONTROLS) D.P.S.; (B58C WTCCC) D.P.S.; (BRIGHT) M.J.B., N.J.S.; (CAPS) H. Grönberg; (CHS) R.C.K.; (CROATIA-Vis) I.R.; (DGI) V. Lyssenko; (EGCUT) A. Metspalu; (EPIC-Norfolk) N.J.W.; (FENLAND) N.J.W.; (Finnish Twin Cohort) J. Kaprio; (KORA S4) A.P.; (NFBC66) M.-R.J.; (NTRNESDA) J.H.S.; (ORCADES) A.F.W.; (PLCO) S.I.B.; (RS I) A. Hofman, F. Rivadeneira, A.G.U.; (SASBAC) P. Hall; (SHIP) M. Dörr, W.H., T.K.; (UKBS-CC) J. Jolley; (WGHS) D.I.C., L.M.R., A.Y.C.; (WTCCC-CAD) A.S.H., N.J.S.; (WTCCC-T2D) A.B., A.T.H.; (Young Finns Study (YFS)) T.L., O.T.R.

New GWAS: (ASCOT) M.J.C., P.S., A.V. Stanton; (ATCG) D.W.H.; (Athero-Express Biobank Study) F.L.M.; (BLSA) S. Bandinelli; (DESIR) R. Roussel; (DNBC) H.A.B., B.F., F.G.; (EGCUT) T.E., A. Metspalu; (eMERGE) J.C.D., A.N.K.; (ERF) B.A.O., C.M.v.D.; (FamHS) I.B.B., M.F.F.; (FINGESTURE) J. Junttila; (GOOD) C.O., M. Lorentzon; (HBCS) J.G.E.; (Health ABC) M.E. Garcia, T.B.H., M.A.N.; (HERITAGE Family Study) C. Bouchard; (HYPERGENES) P.M.; (InCHIANTI) S. Bandinelli, L. Ferrucci; (IPM) O.G.; (LifeLines) S. Scholtens, M.A. Swertz, J.M.V.; (LLS) D.v.H.; (LOLIPOP) J.C.C., J.S.K., U.A., L.O., J. Sehmi; (NELSON) P.A.D.J.; (PLCO2) S.I.B.; (PREVEND) S.J.L.B., R.T.G., H.L.H.; (PROCARDIS) R. Clarke, R. Collins, M.F., A. Hamsten; (PROSPER/PHASE) J.W.J., I.F., B.M.B.; (QFS) A. Tremblay; (QIMR) A.K.H., A.C.H., P.A.F.M., N.G.M., G.W.M.; (RS II) A. Hofman, F. Rivadeneira, A.G.U.; (RS III) A. Hofman, F. Rivadeneira, A.G.U.; (SORBS) A. Tönjes; (SHIP-TREND) M. Dörr, W.H., T.K.; (TRAILS) C.A. Hartman, R.P.S., F.V.A.v.O.; (TWINGENE) P.K.E.M., N.L.P.; (TwinsUK) M. Mangino, C.M.; (WGHS) D.I.C., L.M.R.

Metabochip studies: (ADVANCE) A.S.G., M.A.H.; (AMCPAS) J.J.P.K.; (ARIC) E.B.; (B1958C) E.H., C.P.; (BHS) A.L.J., A.W.M.; (DESIR) R. Roussel; (DGE DietGeneExpression) B.J., I.H.C.; (DIAGEN) J. Gräßler, G.M.; (DPS) J. Lindström; (DR's EXTRA) M.H.; (DUNDEE-GoDARTS) A.S.F.D., A.D.M., C.N.A.P.; (EAS) S. McLachlan; (EGCUT) T.E., A. Metspalu; (EMIL (SWABIA)) B.O.B., S.C.-B., W.K., S. Merger, T.S., R.W.; (FBPP) R.S.C., S.C.H.; (GLACIER) G. Hallmans; (GxE) T. Forrester, B.O.T.; (HNR) R.E., S. Moebus; (HUNT 2) O.H.; (KORA S3) H.-E.W.; (Leipzig) M. Blüher; (MEC) L.R.W.; (METSIM) H.M.S.; (NSHD) D.K.; (PIVUS) C. Berne, E.I., L.L., J. Sundström; (PROMIS) D. Saleheen; (SPT) T. Forrester, B.O.T.; (STR) N.L.P.; (Tandem) M. Bochud, P. Bovet; (THISEAS) S. Kanoni; (Tromsø) T. Wilsgaard; (ULSAM) J.Ä., V. Giedraitis, E.I.; (WHI) C.K., U.P.; (Whitehall) M. Kumari; (WTCCC-T2D) A.B., A.T.H.

Data analysis

Previous GWAS: (AGES) A.V. Smith; (ARIC) K.L. Monda, K.E.N.; (B58C T1D CONTROLS) D.P.S.; (B58C WTCCC) D.P.S.; (CAPS) E.I.; (CHS) R.C.K., B.M.; (COLAUS) S. Bergmann, Z.K.; (CROATIA-Vis) C. Hayward; (deCODE) V. Steinthorsdottir, G.T.; (EGCUT) M. Nelis; (EPIC-Norfolk) J.H.Z.; (FENLAND) J. Luan; (FRAM) L.A.C., N.L.H.-C.; (FUSION) C.J.W.; (GerMIFS II) C.W.; (H2000) N.E.; (HPFS) L.Q.; (NHS) L.Q.; (NSPHS) Å.J.; (PLCO) S.I.B.; (RS I) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (RUNMC) S.H.V.; (SardiNIA) S. Sanna; (SASBAC) E.I.; (SEARCH) J.P.T.; (SHIP) A. Teumer; (WGHS) D.I.C., L.M.R., A.Y.C.; (WTCCC-T2D) A.P.M., T. Ferreira, A. Mahajan, R.M.

New GWAS: (ATCG) P.I.W.d.B., P.J.M., S.R.; (Athero-Express Biobank Studies) S.W.v.d.L.; (B-PROOF) S.v.D.; (BHS) M.C.; (BLSA) T.T.; (CLHNS) D.C.C.-C.; (DESIR) S.C., L.Y.; (DNBC) B.F., F.G.; (EGCUT) T.E., K.F., T.H., R.M.; (eMERGE) M.G.H.; (ERF) N.A., A.D.; (FamHS) M.F.F.; (GOOD) C.O., M. Lorentzon; (HBCS) N.E.; (Health ABC) M.A.N.; (HERITAGE Family Study) C. Bouchard, M.A. Sarzynski, D.C.R., T.R., T.K.R., Y.J.S.; (HYPERGENES) S. Lupoli; (InCHIANTI) D.P., T.T., A.R.W.; (IPM) J. Jeff, V. Lotay, Y. Lu; (LifeLines) I.M.N., J.V.V.V.-O.; (LLS) M. Beekman, J.J.H.-D.; (LOLIPOP) W.Z.; (MGS) J. Shi, (NELSON) S.R., J.v.S.; (PLCO2) S.I.B., Z.W.; (PREVEND) P.v.d.H., I.M.L., N.V.; (PROCARDIS) A. Goel; (PROSPER/PHASE) I.F., B.M.B., S.T.; (QFS) J. Blangero, L.P.; (QIMR) G. Hemani, D.R.N., J.E.P.; (RISC) D.P., A.R.W.; (RS II) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (RS III) K.E., C.M.-G., F. Rivadeneira, A.G.U.; (SHIP-TREND) A. Teumer; (SORBS) R.M.; (TRAILS) H. Snieder; (TWINGENE) E.I., S.G.; (TwinsUK) M. Mangino; (WGHS) D.I.C., L.M.R.

Metabochip studies: (ADVANCE) D. Absher, T.L.A., L.L.W.; (AMCPAS) S. Kanoni; (ARIC) S. Buyske, A.E.J., K.E.N.; (B1958C) T. Ferreira; (BHS) D. Anderson; (CARDIOGENICS) S. Kanoni; (DESIR) S.C., L.Y.; (DGE DietGeneExpression) I.H.C.; (DIAGEN) A.U.J., G.M.; (DILGOM) K.K.; (DUNDEE) T. Ferreira; (EAS) J.L.B., R.M.F.; (EGCUT) T.E., K.F., E.M.; (ELY) J. Luan; (EMIL (SWABIA)) B.O.B.; (EPIC-Norfolk) J. Luan; (FBPP) A.C., G.B.E.; (FENLAND) J. Luan; (GLACIER) F. Renstrom, D. Shungin; (GxE) C.D.P.; (HNR) S. Pechlivanis, A. Scherag; (IMPROVE) L. Folkersen, R.J.S.; (KORA S3) J.S.R.; (KORA S4) E.A.; (Leipzig) A. Mahajan, I.P.; (LURIC) G. Delgado, T.B.G., M.E.K., S. Pilz, H. Scharnag; (MEC) U.L., F.R.S.; (METSIM) A. Stancáková; (NSHD) A.W., J. Luan; (PIVUS) S.G., E.I.; (PROMIS) S. Kanoni; (ScarfSheep) R.J.S.; (SPT) C.D.P.; (STR) E.I., S.G.; (TANDEM) G.B.E.; (THISEAS) M. Dimitriou; (ULSAM) S.G., E.I.; (WHI) J. Gong, J. Haessler, M.R.; (Whitehall) J. Luan; (WTCCC-T2D) A.P.M., T. Ferreira, A. Mahajan, R.M.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information