Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DYX1C1 is required for axonemal dynein assembly and ciliary motility

Abstract

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deficiency of Dyx1c1 in mouse causes phenotypes consistent with motile cilia defects.
Figure 2: Knockdown of dyx1c1 in zebrafish.
Figure 3: Motile cilia are dysfunctional in Dyx1c1-mutant mice.
Figure 4: DYX1C1 mutations in humans cause defective ODA and IDA assembly.
Figure 5: DYX1C1 is localized in the cytoplasm of respiratory epithelial cells and interacts with DNAAF2.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    CAS  PubMed  Google Scholar 

  2. Kennedy, M.P. et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115, 2814–2821 (2007).

    PubMed  Google Scholar 

  3. Ibañez-Tallon, I. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13, 2133–2141 (2004).

    PubMed  Google Scholar 

  4. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143–144 (2002).

    CAS  PubMed  Google Scholar 

  5. Pennarun, G. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508–1519 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Panizzi, J.R. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714–719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Loges, N.T. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazor, M. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duriez, B. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA 104, 3336–3341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartoloni, L. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA 99, 10282–10286 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwabe, G.C. et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 29, 289–298 (2008).

    CAS  PubMed  Google Scholar 

  12. Knowles, M.R. et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 67, 433–441 (2012).

    PubMed  Google Scholar 

  13. Merveille, A.C. et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72–78 (2011).

    CAS  PubMed  Google Scholar 

  14. Becker-Heck, A. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 43, 79–84 (2011).

    CAS  PubMed  Google Scholar 

  15. Castleman, V.H. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 84, 197–209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ziętkiewicz, E. et al. Mutations in radial spoke head genes and ultrastructural cilia defects in East-European cohort of primary ciliary dyskinesia patients. PLoS ONE 7, e33667 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Olbrich, H. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 91, 672–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Budny, B. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 120, 171–178 (2006).

    CAS  PubMed  Google Scholar 

  19. Moore, A. et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J. Med. Genet. 43, 326–333 (2006).

    CAS  PubMed  Google Scholar 

  20. Omran, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611–616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Loges, N.T. et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Duquesnoy, P. et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 85, 890–896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchison, H.M. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381–389 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kott, E. et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 958–964 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Taipale, M. et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc. Natl. Acad. Sci. USA 100, 11553–11558 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bates, T.C. et al. Dyslexia and DYX1C1: deficits in reading and spelling associated with a missense mutation. Mol. Psychiatry 15, 1190–1196 (2010).

    CAS  PubMed  Google Scholar 

  27. Marino, C. et al. Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes Brain Behav. 6, 640–646 (2007).

    CAS  PubMed  Google Scholar 

  28. Wigg, K.G. et al. Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol. Psychiatry 9, 1111–1121 (2004).

    CAS  PubMed  Google Scholar 

  29. Meng, H. et al. TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort. Hum. Genet. 118, 87–90 (2005).

    CAS  PubMed  Google Scholar 

  30. Marino, C. et al. A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. Eur. J. Hum. Genet. 13, 491–499 (2005).

    CAS  PubMed  Google Scholar 

  31. Scerri, T.S. et al. Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. J. Med. Genet. 41, 853–857 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Y. et al. A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J. Cancer Res. Clin. Oncol. 135, 1265–1276 (2009).

    CAS  PubMed  Google Scholar 

  33. Hatakeyama, S., Matsumoto, M., Yada, M. & Nakayama, K.I. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9, 533–548 (2004).

    CAS  PubMed  Google Scholar 

  34. Massinen, S. et al. Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Hum. Mol. Genet. 18, 2802–2812 (2009).

    CAS  PubMed  Google Scholar 

  35. Wang, Y. et al. DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience 143, 515–522 (2006).

    CAS  PubMed  Google Scholar 

  36. Rosen, G.D. et al. Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cereb. Cortex 17, 2562–2572 (2007).

    PubMed  Google Scholar 

  37. Hoh, R.A. et al. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLoS ONE 7, e52166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ivliev, A.E. et al. Exploring the transcriptome of ciliated cells using in silico dissection of human tissues. PLoS ONE 7, e35618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vogel, P. et al. Congenital hydrocephalus in genetically engineered mice. Vet. Pathol. 49, 166–181 (2012).

    CAS  PubMed  Google Scholar 

  40. Okada, Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459–468 (1999).

    CAS  PubMed  Google Scholar 

  41. Tan, S.Y. et al. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J. Clin. Invest. 117, 3742–3752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chandrasekar, G. et al. The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS ONE 8, e63123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmad, N. et al. A southpaw joins the roster: the role of the zebrafish nodal-related gene southpaw in cardiac LR asymmetry. Trends Cardiovasc. Med. 14, 43–49 (2004).

    CAS  PubMed  Google Scholar 

  44. Plagnol, V. et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28, 2747–2754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tammimies, K. et al. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biol. Psychiatry 73, 583–590 (2013).

    CAS  PubMed  Google Scholar 

  46. Seixas, C. et al. CCTα and CCTδ chaperonin subunits are essential and required for cilia assembly and maintenance in Tetrahymena. PLoS ONE 5, e10704 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    CAS  PubMed  Google Scholar 

  48. Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang, D.W. et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  50. Huang, D.W. et al. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

  51. Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).

    CAS  PubMed  Google Scholar 

  52. Yelon, D. et al. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23–37 (1999).

    CAS  PubMed  Google Scholar 

  53. Odenthal, J. & Nüsslein-Volhard, C. fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258 (1998).

    CAS  PubMed  Google Scholar 

  54. Milewski, W.M. et al. Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology 139, 1440–1449 (1998).

    CAS  PubMed  Google Scholar 

  55. Struhl, G. Anterior and posterior compartments in the proboscis of Drosophila. Dev. Biol. 84, 372–385 (1981).

    CAS  PubMed  Google Scholar 

  56. Zariwala, M.A. et al. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69, 423–450 (2007).

    CAS  PubMed  Google Scholar 

  57. Sisson, J.H. et al. All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 211, 103–111 (2003).

    CAS  PubMed  Google Scholar 

  58. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005).

    PubMed  PubMed Central  Google Scholar 

  59. Rashid, S. et al. The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol. Reprod. Dev. 73, 784–794 (2006).

    CAS  PubMed  Google Scholar 

  60. Olbrich, H. et al. Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr. Res. 59, 418–422 (2006).

    CAS  PubMed  Google Scholar 

  61. Reed, W. et al. Characterization of an axonemal dynein heavy chain expressed early in airway epithelial ciliogenesis. Am. J. Respir. Cell Mol. Biol. 23, 734–741 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the individuals with PCD and their families for participating in this study, the German patient support group Kartagener Syndrom und Primaere Ciliaere Dyskinesie and the US PCD foundation. We thank S. King (University of Connecticut Health Center) for providing antibodies and for helpful discussions. This work was funded by the Deutsche Forschungsgemeinschaft (DFG Om 6/4), by the Interdisziplinaeres Zentrum für Klinische Forschung (IZKF) Münster (H. Omran), by the European Community's Seventh Framework Programme FP7/2009, under grant agreement 241955, SYSCILIA (R.R. and H. Omran), and BESTCILIA, under grant agreement 305404 (H. Omran), by the Netherlands Organization for Scientific Research (NWO; Vidi-91786396 and Vici-016.130.664) (R.R.) and by grants from the US National Institutes of Health (NIH; R01 HD055655, R01 MH056524 and P01 HD057853 (J.J.L.): research grant 5 U54 HL096458-06 (M.R.K., M.W.L., J.L.C. and M.A.Z.); NHLBI grant 5 R01HL071798 (M.R.K. and M.A.Z.); National Institute of Child Health and Human Development (NICHD) grant 2 R01HD048584 (C.E.S., J.V.T., S.C. and R.D.B.); NIH grant U01HL098180 (C.W.L.); and American Heart Association fellowship (Y.L.). The work was also supported by Newlife Foundation grant 10/11/15 (H.M.M.) and Action Medical Research grant RTF1411 (M.S.). UK10K was funded by the Wellcome Trust (award WT091310). This work was supported in part by US NIH grant UL1 TR000083 from the National Center for Advancing Translational Sciences (NCATS).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.J.L. and H. Omran designed the study. N.T.L., C.J., H. Olbrich, R.H., G.W.D., P.P., M.A., D.A.M., S.J.F.L., R.R., K.B. and J.R. performed experiments with human DYX1C1 and analyzed the data. G.K., C.W., J.R., M.G., M.J. and H. Omran provided clinical data on OP cases. M.A.Z., L.C.M., A.J.S., J.L.C., M.W.L., W.E.W. and M.R.K. performed mutational analyses and provided clinical data from UNC cases. J.S.L. performed clinical ascertainment of UCL cases. A.O., M.S. and H.M.M. performed mutation analysis of UCL cases. V.P. developed the deletion algorithm for UCL cases. UK10K performed exome sequencing of UK samples. A.T., B.S., M.C., N.T.L., D.S., P.P. and M.A. performed experiments with mouse Dyx1c1 and analyzed the data. C.W.L., R.F., Y.L., K.L., N.K., X.L., G.G. and K.T. performed experiments with the mouse Sharpei mutant and analyzed the data. C.E.S., J.V.T., S.C. and R.D.B. performed the zebrafish experiments and analyses. D.A.M., S.J.F.L. and R.R. contributed to the yeast two-hybrid experiments.

Corresponding authors

Correspondence to Joseph J LoTurco or Heymut Omran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Details appear in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 4–6, Supplementary Figures 1–9 and Supplementary Notes (PDF 2280 kb)

Supplementary Table 1

Clinical findings and DYX1C1 mutations in PCD patients with ODA and IDA defects. (XLSX 14 kb)

Supplementary Table 2

Wild-type and knockout MS/MS results. (XLSX 1009 kb)

Supplementary Table 3

Complete list of PANTHER Gene Ontology enrichment terms from Dyx1c1-interacting proteins identified by tandem mass spectrometry. (XLSX 25 kb)

Supplementary Video 1

Sharpei mutants show a spectrum of complex CHD, such as transposition of the great arteries with ventricular septal defect and coronary fistula. (AVI 10661 kb)

Supplementary Video 2

Sharpei mutants show a spectrum of complex CHD, such as double-outlet right ventricle with right atrial isomerism. (AVI 21309 kb)

Supplementary Video 3

Sharpei mutants show a spectrum of complex CHD, such as muscular VSD and atrioventricular septal defects. (AVI 8636 kb)

Supplementary Video 4

Directional ependymal fluid flow visualized by the displacement of a small volume of India ink pressure injected onto the ependymal surface. (AVI 261 kb)

Supplementary Video 5

Directional ependymal fluid flow was completely missing in tissue obtained from all Dyx1c1Δ/Δ. (AVI 238 kb)

Supplementary Video 6

Motility of ependymal cilia in coronal brain slices examined by IR-DIC videomicroscopy. (AVI 316 kb)

Supplementary Video 7

Cilia on ependymal cells from all Dyx1c1Δ/Δ examined (n = 4) lacked ciliary beating. (AVI 313 kb)

Supplementary Video 8

Videomicroscopy of tissue slice from the third brain ventricle in newborn homozygous Sharpei mutants also showed completely immotile cilia. Beads added to the solution above the brain slice exhibited only random motion, whereas in wild-type littermate control, the beads showed ependymal cilia–generated flow (AVI 18924 kb)

Supplementary Video 9

Tracheal airway epithelia in newborn homozygous Sharpei mutants showed completely immotile cilia, consistent with PCD, whereas littermate controls showed normal rapid synchronous ciliary beat. (AVI 18733 kb)

Supplementary Video 10

dyx1c1 morpholino–injected embryos had cilia in Kupffer's vesicle that lacked motility compared to uninjected embryos. The video scans through the Kupffer's vesicle, and non-motile cilia can be observed on the periphery. (AVI 722 kb)

Supplementary Video 11

Motility of cilia in Kupffer's vesicle in a wild-type zebrafish embryo analyzed with high-speed videomicroscopy. The video scans through the Kupffer's vesicle, and motile cilia can be observed on the periphery. (AVI 1815 kb)

Supplementary Video 12

Analysis of the ciliary beating pattern of respiratory cilia from OP-86 II2 by high-speed videomicroscopy. (AVI 2093 kb)

Supplementary Video 13

Analysis of the ciliary beating pattern of respiratory cilia from OP-86 II2 by high-speed videomicroscopy. (AVI 15106 kb)

Supplementary Video 14

Analysis of the ciliary beating pattern of respiratory cilia from F648II1 by high-speed videomicroscopy. (AVI 15106 kb)

Supplementary Video 15

Analysis of the ciliary beating pattern of respiratory cilia from F648II1 by high-speed videomicroscopy. (AVI 15106 kb)

Supplementary Video 16

Analysis of the ciliary beating pattern of respiratory cilia from control respiratory cells by high-speed videomicroscopy. (AVI 15106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarkar, A., Loges, N., Slagle, C. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45, 995–1003 (2013). https://doi.org/10.1038/ng.2707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing