Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mutational landscape of adenoid cystic carcinoma

Abstract

Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary gland cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here we determined the ACC mutational landscape and report the exome or whole-genome sequences of 60 ACC tumor-normal pairs. These analyses identified a low exonic somatic mutation rate (0.31 non-silent events per megabase) and wide mutational diversity. Notably, we found mutations in genes encoding chromatin-state regulators, such as SMARCA2, CREBBP and KDM6A, suggesting that there is aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to the DNA damage response and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying the role of these aberrations as critical events in ACC. Lastly, we identified recurrent mutations in the FGF-IGF-PI3K pathway (30% of tumors) that might represent new avenues for therapy. Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational landscape of ACC.
Figure 2: Integrated analysis of genetic alterations in ACC.
Figure 3: Structural variations and copy number landscape in ACC.
Figure 4: Diversity and frequency of ACC genetic changes culminating in aberrant signaling pathways.
Figure 5: Functional consequences of genetic alterations in KDM6A, TP53, PI3K and FAT4 pathway genes.

Similar content being viewed by others

References

  1. Adelstein, D.J., Koyfman, S.A., El-Naggar, A.K. & Hanna, E.Y. Biology and management of salivary gland cancers. Semin. Radiat. Oncol. 22, 245–253 (2012).

    Article  PubMed  Google Scholar 

  2. Agulnik, M. et al. Phase II study of lapatinib in recurrent or metastatic epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non adenoid cystic carcinoma malignant tumors of the salivary glands. J. Clin. Oncol. 25, 3978–3984 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Holst, V.A., Marshall, C.E., Moskaluk, C.A. & Frierson, H.F. Jr. KIT protein expression and analysis of c-kit gene mutation in adenoid cystic carcinoma. Mod. Pathol. 12, 956–960 (1999).

    CAS  PubMed  Google Scholar 

  4. Laurie, S.A., Ho, A.L., Fury, M.G., Sherman, E. & Pfister, D.G. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. 12, 815–824 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Persson, M. et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosom. Cancer 51, 805–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  9. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pugh, T.J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molenaar, J.J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  13. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter, H. et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res. 69, 6660–6667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sathirapongsasuti, J.F. et al. Exome sequencing–based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27, 2648–2654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vékony, H. et al. DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma. Clin. Cancer Res. 13, 3133–3139 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Brooks, A.N., Kilgour, E. & Smith, P.D. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin. Cancer Res. 18, 1855–1862 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Wolffe, A.P. Chromatin remodeling: why it is important in cancer. Oncogene 20, 2988–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chi, P., Allis, C.D. & Wang, G.G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Houdt, J.K. et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat. Genet. 44, 445–449 (2012).

    CAS  PubMed  Google Scholar 

  23. Tsurusaki, Y. et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44, 376–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, Y. et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21, 3073–3084 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Masse, J.E. et al. The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J. Mol. Biol. 323, 263–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spangle, J.M. & Munger, K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol. 84, 9398–9407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyer, N.G. et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc. Natl. Acad. Sci. USA 101, 7386–7391 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olsen, E.A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tien, A.L. et al. UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem. J. 435, 175–185 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Cerami, E.G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Egloff, A.M. & Grandis, J.R. Molecular pathways: context-dependent approaches to notch targeting as cancer therapy. Clin. Cancer Res. 18, 5188–5195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA 106, 18740–18744 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, L. et al. Functional SNP in the microRNA-367 binding site in the 3′ UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl. Acad. Sci. USA 108, 13653–13658 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abdul, M., Ramlal, S. & Hoosein, N. Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol. Oncol. Res. 14, 157–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Hu, S.C., Chrivia, J. & Ghosh, A. Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22, 799–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bannister, A.J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Essers, M.A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dey, J.H. et al. Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res. 70, 4151–4162 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, R.B. et al. A novel interleukin-17 receptor–like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor–induced signaling. J. Biol. Chem. 278, 33232–33238 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Tan, Y., Sangfelt, O. & Spruck, C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 271, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J. et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allen, T.D., Rodriguez, E.M., Jones, K.D. & Bishop, J.M. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 71, 6010–6018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sarmento, L.M. & Barata, J.T. Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises. Expert Rev. Anticancer Ther. 11, 1403–1415 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Iozzo, R.V. & Murdoch, A.D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Tran, P.K. et al. Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res. 94, 550–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Zhou, Z. et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Savorè, C. et al. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 22, 377–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Munakata, R., Irie, T., Cheng, J., Nakajima, T. & Saku, T. Pseudocyst formation by adenoid cystic carcinoma cells in collagen gel culture and in SCID mice. J. Oral Pathol. Med. 25, 441–448 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Cheng, J., Saku, T., Okabe, H. & Furthmayr, H. Basement membranes in adenoid cystic carcinoma. An immunohistochemical study. Cancer 69, 2631–2640 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Kimura, S. et al. Perlecan (heparan sulfate proteoglycan) gene expression reflected in the characteristic histological architecture of salivary adenoid cystic carcinoma. Virchows Arch. 437, 122–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Figueroa, M.E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Binmadi, N.O. et al. Plexin-B1 and semaphorin 4D cooperate to promote perineural invasion in a RhoA/ROK-dependent manner. Am. J. Pathol. 180, 1232–1242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodrigues, S., De Wever, O., Bruyneel, E., Rooney, R.J. & Gespach, C. Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26, 5615–5625 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Zang, Z.J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Phuchareon, J., Ohta, Y., Woo, J.M., Eisele, D.W. & Tetsu, O. Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PLoS ONE 4, e6040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anonymous. RETRACTED: Nef from SIVmac239 decreases proliferation and migration of adenoid-cystic carcinoma cells and inhibits angiogenesis. Oral Oncol. [OO 47 (2011) 847–854] 48, 95 (2012).

  73. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Janakiraman, M. et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res. 70, 5901–5911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Larson, D.E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  81. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  87. Bengtsson, H., Irizarry, R., Carvalho, B. & Speed, T.P. Estimation and assessment of raw copy numbers at the single locus level. Bioinformatics 24, 759–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Staaf, J. et al. Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios. BMC Bioinformatics 9, 409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yau, C. et al. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol. 11, R92 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fiegler, H. et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosom. Cancer 36, 361–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Gopalan, A. et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 69, 1400–1406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  95. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  97. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Kayserian and S. Thomas for technical assistance. We are indebted to R.J. Wong (Memorial Sloan-Kettering Cancer Center), P.K. Brindle (St. Jude Children's Research Hospital) and O.J. Baker (State University of New York at Buffalo) for generously providing cell lines and constructs. We are additionally grateful to J.O. Boyle, S.G. Patel, A.R. Shaha, R.J. Wong, A.L. Ho, M.C. Mariano and L. Lopez for facilitating tissue procurement and contributing valuable input. This work was supported by the US National Institutes of Health (NIH) (RO1CA154767 (T.A.C.), R21DE023229 (T.A.C.), 5T32CA009685 (A.S.H.)), the Geoffrey Beene Foundation (T.A.C.), the Starr Cancer Consortium (T.A.C.) and the Louis Gerstner Foundation (T.A.C.). A.S.H. was supported by an American Head and Neck Society/American Academy of Otolaryngology–Head and Neck Surgery Foundation Young Investigator Combined Award. D.M.R. was supported by the Howard Hughes Medical Institute Medical Research Fellows Program. The cBio Portal was supported in part by the NIH National Resource for Network Biology (GM103504). T.A.C. would like to thank Jeff and Marnie Kaufman and the Adenoid Cystic Carcinoma Research Foundation for support of the work and inspiration to see it through for the benefit of patients.

Author information

Authors and Affiliations

Authors

Contributions

T.A.C., A.S.H., K.K. and W.L. designed the experiments. D.M.R., A.S.H., S.E., A.V., A.H., K.H., D.R., L.A.W., J.T.H., J.Z., N.G.I., Y.G., M.A.L. and C.E.R. performed the experiments. A.S.H., W.L., T.A.C., K.K., D.M.R., L.G.T.M. and S.T. analyzed the data. N.K. and R.R.S. provided histopathological confirmation of sample purity. A.S.H., T.A.C. and W.L. wrote the manuscript. A.S.H., I.G., L.G.T.M., M.D., J.P.S., B.S., N.G.I., C.R.L., E.B., R.L.F., R.R.S., S.C. and S.K. contributed new reagents and provided tissues for analysis. W.L., K.K., A.S.H., T.A.C., L.P., B.J.R., I.D., Y.L., R.S., N.S., B.E.G. and C.S. conducted the bioinformatics analysis.

Corresponding author

Correspondence to Timothy A Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–9, Supplementary Note (PDF 3885 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, A., Kannan, K., Roy, D. et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet 45, 791–798 (2013). https://doi.org/10.1038/ng.2643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2643

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer