Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Systematic identification of trans eQTLs as putative drivers of known disease associations

Abstract

Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE)1, altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE2,3,4. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3′ UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trans-eQTL SNPs are enriched for functional elements.
Figure 2: Independent trans-eQTL effects emanating from the IKZF1 locus.
Figure 3: Two unlinked T1D risk alleles are associated with increased STAT1 and GBP4 expression.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Gene Expression Omnibus

References

  1. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Bengtsson, A.A. et al. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 9, 664–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Bohlson, S.S., Fraser, D.A. & Tenner, A.J. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol. Immunol. 44, 33–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ytterberg, S.R. & Schnitzer, T.J. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. 25, 401–406 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Fehrmann, R.S. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicolae, D.L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Pickrell, J.K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubois, P.C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Innocenti, F. et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7, e1002078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467, 460–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Small, K.S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43, 561–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Metspalu, A. The Estonian Genome Project. Drug Dev. Res. 62, 97–101 (2004).

    Article  CAS  Google Scholar 

  15. Tanaka, T. et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 5, e1000338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hofman, A. et al. The Rotterdam Study: 2012 objectives and design update. Eur. J. Epidemiol. 26, 657–686 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heckbert, S.R. et al. Antihypertensive treatment with ACE inhibitors or β-blockers and risk of incident atrial fibrillation in a general hypertensive population. Am. J. Hypertens. 22, 538–544 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Psaty, B.M. et al. The risk of myocardial infarction associated with antihypertensive drug therapies. J. Am. Med. Assoc. 274, 620–625 (1995).

    Article  CAS  Google Scholar 

  19. Smith, N.L. et al. Esterified estrogens and conjugated equine estrogens and the risk of venous thrombosis. J. Am. Med. Assoc. 292, 1581–1587 (2004).

    Article  CAS  Google Scholar 

  20. Teumer, A. et al. Genome-wide association study identifies four genetic loci associated with thyroid volume and goiter risk. Am. J. Hum. Genet. 88, 664–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, e1001113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mehta, D. et al. Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood. Eur. J. Hum. Genet. 21, 48–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Powell, J.E. et al. The Brisbane Systems Genetics Study: genetical genomics meets complex trait genetics. PLoS ONE 7, e35430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, C. et al. Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. Eur. J. Hum. Genet. 10.1038/ejhg.2012.277 (19 December 2012).

  25. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  26. Patterson, K. 1000 genomes: a world of variation. Circ. Res. 108, 534–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McAdam, R.A., Goundis, D. & Reid, K.B. A homozygous point mutation results in a stop codon in the C1q B-chain of a C1q-deficient individual. Immunogenetics 27, 259–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Zhernakova, D.V. et al. DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet. 9, e1003594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  33. Ganesh, S.K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat. Genet. 41, 1191–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J.H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Zabaneh, D. & Balding, D.J. A genome-wide association study of the metabolic syndrome in Indian Asian men. PLoS ONE 5, e11961 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plagnol, V. et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 7, e1002216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eriksson, N. et al. Novel associations for hypothyroidism include known autoimmune risk loci. PLoS ONE 7, e34442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin, Y. et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat. Genet. 44, 676–680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Rotival, M. et al. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet. 7, e1002367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  49. Westra, H.J. et al. MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics 27, 2104–2111 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Breitling, R. et al. Genetical genomics: spotlight on QTL hotspots. PLoS Genet. 4, e1000232 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Whitlock, M.C. Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach. J. Evol. Biol. 18, 1368–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Alberts, R. et al. Sequence polymorphisms cause many false cis eQTLs. PLoS ONE 2, e622 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Benovoy, D., Kwan, T. & Majewski, J. Effect of polymorphisms within probe-target sequences on olignonucleotide microarray experiments. Nucleic Acids Res. 36, 4417–4423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, Z. & Taylor, J.A. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 37, W600–W605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dayem Ullah, A.Z., Lemoine, N.R. & Chelala, C. SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Res. 40, W65–W70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chelala, C., Khan, A. & Lemoine, N.R. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics 25, 655–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84–D90 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Acknowledgments for each participating cohort can be found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

Experiment design and method development: H.-J.W., M.J.P., T.E., H.Y., C.S., J. Kettunen, M.W.C., B.P.F., K. Schramm, J. Karjalainen, T.L., Y.L., R.C.J., B.M.P., S.R., A.T., T.M.F., A.M., J.B.J.M. and L. Franke. Reviewing and editing of the manuscript: H.-J.W., M.J.P., T.E., H.Y., C.S., J. Kettunen, M.W.C., B.P.F., A.Z., A.G.U., A.H., F.R., V.S., J.B., T.L., Y.L., R.C.J., P.M.V., J.C.K., B.M.P., S.R., A.T., T.M.F., A.M., J.B.J.M. and L. Franke. Data collection: D.V.Z., J.H.V., J. Karjalainen, S.W., F.R., P.A.C.t.H., E.R., K.F., M. Nelis, L.M., D.M., L. Ferrucci, A.B.S., D.G.H., M.A.N., G.H., M. Nauck, D.R., U.V., M.P., A.S.-D., S.A.G., D.A.E., G.W.M., S.M., H.P., C.H., M.R., H.G., T.M., K. Strauch and L.H.V.d.B. Replication of trans-eQTL results: B.P.F., K. Schramm, J.E.P., P.M.V. and J.C.K.

Corresponding authors

Correspondence to Harm-Jan Westra or Lude Franke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18, Supplementary Tables 1–10 and Supplementary Note (PDF 48998 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westra, HJ., Peters, M., Esko, T. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45, 1238–1243 (2013). https://doi.org/10.1038/ng.2756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing