Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the fine structure of a eukaryotic promoter input-output function

Abstract

The precise tuning of gene expression levels is essential for the optimal performance of transcriptional regulatory networks. We created 209 variants of the Saccharomyces cerevisiae PHO5 promoter to quantify how different binding sites for the transcription factor Pho4 affect its output. We found that transcription-factor binding affinities determined in vitro could quantitatively predict the output of a complex yeast promoter. Promoter output was precisely tunable by subtle changes in binding-site affinity of less than 3 kcal mol−1, which are accessible by modifying 1–2 bases. Our results provide insights into how transcription-factor binding sites regulate gene expression, their possible evolution and how they can be used to precisely tune gene expression. More generally, we show that in vitro binding-energy landscapes of transcription factors can precisely predict the output of a native yeast promoter, indicating that quantitative models of transcriptional regulatory networks are feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and assembly of the promoter library.
Figure 2: On-chip induction, imaging and analysis.
Figure 3: Induction traces for each promoter in the library under Pi starvation.
Figure 4: Single Pho4 site variants.
Figure 5: Effects of split sites, dual site modifications and ablations.
Figure 6: Correlation between in vitro binding-site affinity and in vivo promoter output.
Figure 7: Phosphate-dependent activation of the PHO5 promoter.
Figure 8: Promoter dynamic range and induction threshold.

Similar content being viewed by others

References

  1. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geertz, M. & Maerkl, S.J. Experimental strategies for studying transcription factor–DNA binding specificities. Brief Funct. Genomics 9, 362–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gertz, J., Siggia, E.D. & Cohen, B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwasnieski, J.C., Mogno, I., Myers, C.A., Corbo, J.C. & Cohen, B.A. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc. Natl. Acad. Sci. USA 109, 19498–19503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeevi, D. et al. Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Res. 21, 2114–2128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kinney, J.B., Murugan, A., Callan, C.G. Jr. & Cox, E.C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl. Acad. Sci. USA 107, 9158–9163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gertz, J. & Cohen, B.A. Environment-specific combinatorial cis-regulation in synthetic promoters. Mol. Syst. Biol. 5, 9 (2009).

    Article  Google Scholar 

  10. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lam, F.H., Steger, D.J. & O'Shea, E.K. Chromatin decouples promoter threshold from dynamic range. Nature 458, 6 (2008).

    Google Scholar 

  13. Aow, J.S. et al. Differential binding of the related transcription factors Pho4 and Cbf1 can tune the sensitivity of promoters to different levels of an induction signal. Nucleic Acids Res. 41, 4877–4887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kahana, S. et al. Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 186, 829–841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su, T.C., Tamarkina, E. & Sadowski, I. Organizational constraints on Ste12 cis-elements for a pheromone response in Saccharomyces cerevisiae. FEBS J. 277, 3235–3248 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Khalil, A.S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raveh-Sadka, T. et al. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat. Genet. 44, 743–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Svaren, J. & Hörz, W. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22, 5 (1997).

    Article  Google Scholar 

  21. Maerkl, S.J. & Quake, S.R. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Oshima, Y. The phosphatase system in Saccharomyces cerevisae. Genes Genet. Syst. 72, 323–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Ogawa, N., DeRisi, J.L. & Brown, P.O. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11, 13–22 (2000).

    Article  Google Scholar 

  24. Venter, U., Svaren, J., Schmitz, J., Schmid, A. & Hörz, W. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13, 8 (1994).

    Article  Google Scholar 

  25. Barbarić, S., Münsterkötter, M., Goding, C.R. & Hörz, W. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol. Cell Biol. 18, 11 (1998).

    Article  Google Scholar 

  26. Barbarić, S., Münsterkötter, M., Svaren, J. & Hörz, W. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 24, 4479–4486 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rajkumar, A.S. & Maerkl, S.J. Rapid synthesis of defined eukaryotic promoter libraries. ACS Synth. Biol. 1, 483–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu, T. et al. Crystal structure of PHO4 bHLH domain–DNA complex: flanking base recognition. EMBO J. 16, 4689–4697 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fisher, F. & Goding, C.R. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J. 11, 7 (1992).

    Article  Google Scholar 

  31. Maerkl, S.J. & Quake, S.R. Experimental determination of the evolvability of a transcription factor. Proc. Natl. Acad. Sci. USA 106, 18650–18655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mogno, I., Vallania, F., Mitra, R.D. & Cohen, B.A. TATA is a modular component of synthetic promoters. Genome Res. 20, 1391–1397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Granek, J.A. & Clarke, N.D. Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol. 6, R87 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bintu, L. et al. Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev. 15, 116–124 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, X. & O'Shea, E.K. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol. Cell 42, 826–836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahony, S. & Benos, P.V. STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res. 35, W253–W258 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spivak, A.T. & Stormo, G.D. ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species. Nucleic Acids Res. 40, D162–D168 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wykoff, D.D. & O'Shea, E.K. Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159, 10 (2001).

    Google Scholar 

  39. Springer, M., Wykoff, D.D., Miller, N. & O'Shea, E.K. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes. PLoS Biol. 1, E28 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Raveh-Sadka, T., Levo, M. & Segal, E. Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res. 19, 1480–1496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiang, D.Y., Nix, D.A., Shultzaberger, R.K., Gasch, A.P. & Eisen, M.B. Flexible promoter architecture requirements for coactivator recruitment. BMC Mol. Biol. 7, 16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Janssens, H. et al. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat. Genet. 38, 1159–1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H.D. & O'Shea, E.K. A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol. 15, 1192–1198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao, C. et al. Quantitative analysis of the transcription control mechanism. Mol. Syst. Biol. 6, 431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhu, C. et al. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 19, 556–566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Schneider, T.D. Information content of individual genetic sequences. J. Theor. Biol. 189, 427–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Schneider, T.D. & Stephens, R.M. Sequence logos:a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller, C. et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 7, 458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E.K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karpinets, T.V., Greenwood, D.J., Sams, C.E. & Ammons, J.T. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol. 4, 30 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3889–3894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Sinha, S., van Nimwegen, E. & Siggia, E.D. A probabilistic method to detect regulatory modules. Bioinformatics 19, i292–i301 (2003).

    Article  PubMed  Google Scholar 

  58. Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D. & Cross, F.R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Mavrich, T.N. et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18, 1073–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crank, J. The Mathematics of Diffusion (Clarendon Press, Oxford, 1986).

Download references

Acknowledgements

We thank J.L. Garcia-Cordero for help with modeling phosphate uptake and the Shore lab at the University of Geneva for their assistance with the library construction. This work was supported by a SystemsX.ch grant DynamiX-RTD (2008/005) to S.J.M. and the École Polytechnique Fédérale de Lausanne.

Author information

Authors and Affiliations

Authors

Contributions

S.J.M. and A.S.R. designed the library constructs. A.S.R. synthesized the promoter libraries, performed nucleosome occupancy measurements and characterized the promoter library in bulk. N.D. carried out the on-chip experiments. N.D. and S.J.M. designed and implemented the transcription model. A.S.R. and S.J.M. analyzed the data. A.S.R. and S.J.M. wrote the manuscript.

Corresponding author

Correspondence to Sebastian J Maerkl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–18 (PDF 10181 kb)

Supplementary data set

Supplementary data set (XLS 607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajkumar, A., Dénervaud, N. & Maerkl, S. Mapping the fine structure of a eukaryotic promoter input-output function. Nat Genet 45, 1207–1215 (2013). https://doi.org/10.1038/ng.2729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2729

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research