Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

Abstract

Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL)1,2,3, but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A (p.Gly183Ser), affecting the octapeptide domain of PAX5 that was found to segregate with disease in two unrelated kindreds with autosomal dominant B-ALL. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss harbored somatic PAX5 substitutions affecting Gly183. Functional and gene expression analysis of the PAX5 mutation demonstrated that it had significantly reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B cell ALL and implicate PAX5 in a new syndrome of susceptibility to pre-B cell neoplasia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Familial pre-B cell ALL associated with i(9)(q10) and dic(9;v) alterations in two families harboring a new, recurrent germline variant encoding p.Gly183Ser.
Figure 2: Recurrent PAX5 mutations in ALL.
Figure 3: Attenuated transcriptional activity of p.Gly183Ser PAX5.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Mullighan, C.G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuiper, R.P. et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hemminki, K. & Jiang, Y. Risks among siblings and twins for childhood acute lymphoid leukaemia: results from the Swedish Family-Cancer Database. Leukemia 16, 297–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Pui, C.H., Robison, L.L. & Look, A.T. Acute lymphoblastic leukaemia. Lancet 371, 1030–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Mullighan, C.G. & Downing, J.R. Global genomic characterization of acute lymphoblastic leukemia. Semin. Hematol. 46, 3–15 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullighan, C.G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23, 134–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J. et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 118, 3080–3087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Maier, H., Colbert, J., Fitzsimmons, D., Clark, D.R. & Hagman, J. Activation of the early B-cell-specific mb-1 (Ig-α) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol. Cell. Biol. 23, 1946–1960 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Czerny, T. & Busslinger, M. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol. Cell. Biol. 15, 2858–2871 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eberhard, D., Jimenez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pridans, C. et al. Identification of Pax5 target genes in early B cell differentiation. J. Immunol. 180, 1719–1728 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Revilla-I-Domingo, R. et al. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO J. 31, 3130–3146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 49–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dang, J., Mullighan, C.G., Phillips, L.A., Mehta, P. & Downing, J.R. Retroviral and chemical mutagenesis identifies Pax5 as a tumor suppressor in B-progenitor acute lymphoblastic leukemia. Blood (ASH Annual Meeting Abstracts) 112, 1789 (2008).

    Google Scholar 

  22. Powell, B.C. et al. Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatr. Blood Cancer 60, E1–E3 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pounds, S. et al. Reference alignment of SNP microarray signals for copy number analysis of tumors. Bioinformatics 25, 315–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  PubMed  Google Scholar 

  28. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Mullighan, C.G. Single nucleotide polymorphism microarray analysis of genetic alterations in cancer. Methods Mol. Biol. 730, 235–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, M. et al. dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 20, 1233–1240 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Cai, Y., Brophy, P.D., Levitan, I., Stifani, S. & Dressler, G.R. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J. 22, 5522–5529 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lundblad, A. et al. Immunochemical studies on mouse myeloma proteins with specificity for dextran or for levan. Immunochemistry 9, 535–544 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Sitia, R., Neuberger, M.S. & Milstein, C. Regulation of membrane IgM expression in secretory B cells: translational and post-translational events. EMBO J. 6, 3969–3977 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maier, H. et al. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-α gene transcription by Pax-5 (BSAP). Nucleic Acids Res. 31, 5483–5489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hombach, J., Tsubata, T., Leclercq, L., Stappert, H. & Reth, M. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 343, 760–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2009).

  37. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

  39. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  40. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  PubMed  Google Scholar 

  41. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300 (1995).

    Google Scholar 

  42. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.A.S. Moore and S. Jae-Hung for their contributions to ongoing tumor studies (Sloan-Kettering Institute); G. Dressler (University of Michigan) for the mouse GRG4 construct; M. Busslinger (The Research Institute for Molecular Pathology) for the luc-CD19 reporter construct; J. Hagman (National Jewish) for providing a PAX5 vector and the J558LμM cell line; D. Payne-Turner (St. Jude Children's Research Hospital) for technical assistance; W. Yang and C. Smith (Pharmaceutical Sciences, St. Jude Children's Research Hospital) for their assistance in the haplotype analyses; and the Tissue Resources Core Facility, Pediatric Cancer Genome Project Core Facility and Flow Cytometry and Cell Sorting Core Facility of St. Jude Children's Research Hospital. We thank the families for their generous participation in these studies. This project was supported by grant I5-A523 from the Starr Cancer Consortium, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Sabin Family Research Fund, the Lymphoma Foundation, Geoffrey Beene Cancer Research Center grant 78730, the Sharon Levine Corzine Foundation, the Barbara L. Goldsmith Genetics Research Fund, Cancer Prevention and Research Institute of Texas grant RP101089, the New South Wales Priory of the Knights of the Order of Saint John, the Matthew Bell Foundation, National Cancer Institute of the US National Institutes of Health (NIH) Comprehensive Cancer Center Core grant CA21765, the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital and grant R01DK58161 from the US NIH. R.P.K. is funded by a grant from the Dutch Cancer Society (KUN2009-4298). T.K. is supported by a German Research Foundation Postdoctoral Fellowship (KI1605/1-1). C.G.M. is a Pew Scholar in the Biomedical Sciences and a St. Baldrick's Scholar. K.G.R. is supported by a National Health and Medical Research Council (NHMRC, Australia) CJ Martin Postdoctoral Fellowship. K.A.S. is funded by the Canadian Institutes of Health Research. A.E.T. is supported by T32GM007454 from the National Institute of General Medical Sciences (NIGMS). G.C.-T. is a Senior Principal Research Fellow of the NHMRC. E.W. is funded by the Dutch Cancer Society, project number KUN2012-5366. H.S.S. is a Principal Research Fellow of the NHMRC (APP1023059), and the work was supported by grant APP1024215.

Author information

Authors and Affiliations

Authors

Contributions

K. Offit, C.G.M., M.S.H., J.T.S., S.S., K.A.S., E.W., A.E.T., J.V., C. Miething, S.M. Lipkin, R.J.K., M.D., D.A. and S.W.L. conceived and designed the experiment. S.S., K.A.S., E.W., A.E.T., J.V., C. Miething, J.W., J.Y., X.G., C. Manschreck, R.J.K., A.V., N.D.S., D.A., M.S.H., C.G.M., K. Offit, M.-C.K., T.W., M.L., T.K., D.B., J. Littman, L.O., S.C.R., P. Maslak, M.F., K.G.R. and J.C. performed the experiments. S.S., K.A.S., E.W., A.E.T., J.V., C. Miething, J.W., J.Y., R.J.K., N.D.S., M.S.H., C.G.M., K. Offit, L.W., J.Z., G.W., M.R., P.N., J.M., S.-C.C., G.S. and J.C. performed statistical analysis. S.S., K.A.S., E.W., A.E.T., J.V., C. Miething, J.W., J.Y., C. Manschreck, R.R.-M., M.C., R.M., M.H.F., S.M. Lipkin, R.J.K., A.V., N.D.S., D.A., C.N.H., H.S.S., S.W.L., M.S.H., C.G.M., K. Offit, L.W., J.H., J.Z., G.W., M.R., P.N., J.M., S.-C.C., G.S. and J.C. analyzed the data. E.W., C. Miething, J.T.S., S.J., M.H.F., J.S., V.V.M., S.E.P., D.G.H., D.S.Z., G.C.-T., S.M. Lipkin, S.M. Lo, R.L.L., A.V., K.L.N., M.D., D.A., C.N.H., H.S.S., S.W.L., M.S.H., C.G.M., K. Onel, R.P.K., A.S., J. Li, K.T., R.S., S.H., J.D.S., D.A.W., D.R., P. Meyers, J.Z., G.W., J.M., S.-C.C., J.R.D. and K. Offit contributed reagents, materials and analysis tools. K. Offit, C.G.M., M.S.H., S.S., K.A.S., E.W., A.E.T., J.V., C. Miething, J.Y., R.J.K. and S.W.L. wrote the manuscript. K. Offit, C.G.M., M.S.H., J.T.S., R.J.K., M.D., D.A. and S.W.L. jointly supervised the research.

Corresponding authors

Correspondence to Marshall S Horwitz, Charles G Mullighan or Kenneth Offit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–8 and Supplementary Tables 1–8 and 13–15 (PDF 1509 kb)

Supplementary Table 9

Expression of somatic SNVs in family 2 (XLSX 19 kb)

Supplementary Table 10

Expression of shared germline SNVs in family 2 (XLSX 11 kb)

Supplementary Table 11

Expression of germline SNVs of family 2 IV2 (XLSX 31 kb)

Supplementary Table 12

Expression of germline SNVs of family 2 IV1 (XLSX 35 kb)

Supplementary Table 16

RNASeq data from human ALL samples. (XLS 518 kb)

Supplementary Table 17

Mouse expression array data from J558LμM transduced cells, WT vs MT (XLS 1114 kb)

Supplementary Table 18

Mouse expression array data from J558LμM transduced cells, MIR vs MT (XLS 1245 kb)

Supplementary Table 19

PAX5 p.Gly183Ser signature in familial ALL (XLSX 14146 kb)

Supplementary Table 20

PAX5 signature in ETV6-RUNX1 ALL (XLSX 9454 kb)

Supplementary Table 21

Expression analyses gene sets (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S., Schrader, K., Waanders, E. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet 45, 1226–1231 (2013). https://doi.org/10.1038/ng.2754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing