Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility

Abstract

Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DIS3L2 mutations in Perlman syndrome.
Figure 2: DIS3L2 shows exoribonuclease activity.
Figure 3: Knockdown of DIS3L2 increases the variability of chromosome number within individual cells.
Figure 4: Knockdown of DIS3L2 induces errors in cell division.
Figure 5: Loss of DIS3L2 expression dysregulates the expression of mitotic control proteins.
Figure 6: Effects of DIS3L2 expression level on cell growth.

Similar content being viewed by others

References

  1. Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am. J. Med. Genet. C Semin. Med. Genet. 137C, 53–71 (2005).

    Article  PubMed  Google Scholar 

  2. Baujat, G. & Cormier-Daire, V. Sotos syndrome. Orphanet J. Rare Dis. 2, 36 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alessandri, J.L. et al. Perlman syndrome: report, prenatal findings and review. Am. J. Med. Genet. A. 146A, 2532–2537 (2008).

    Article  PubMed  Google Scholar 

  4. Lim, D.H. & Maher, E.R. Genomic imprinting syndromes and cancer. Adv. Genet. 70, 145–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Liban, E. & Kozenitzky, I.L. Metanephric hamartomas and nephroblastomatosis in siblings. Cancer 25, 885–888 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Perlman, M., Goldberg, G.M., Bar-Ziv, J. & Danovitch, G. Renal hamartomas and nephroblastomatosis with fetal gigantism: a familial syndrome. J. Pediatr. 83, 414–418 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Perlman, M., Levin, M. & Wittels, B. Syndrome of fetal gigantism, renal hamartomas and nephroblastomatosis with Wilms' tumour. Cancer 35, 1212–1217 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Neri, G., Martini-Neri, M.E., Katz, B.E. & Opitz, J.M. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am. J. Med. Genet. 19, 195–207 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg, F. et al. The Perlman familial nephroblastomatosis syndrome. Am. J. Med. Genet. 24, 101–110 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Perlman, M. Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism, and multiple congenital anomalies. Am. J. Med. Genet. 25, 793–795 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg, F., Copeland, K. & Gresik, M.V. Expanding the spectrum of the Perlman syndrome. Am. J. Med. Genet. 29, 773–776 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Henneveld, H.T., van Lingen, R.A., Hamel, B.C., Stolte-Dijkstra, I. & van Essen, A.J. Perlman syndrome: four additional cases and review. Am. J. Med. Genet. 86, 439–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Staals, R.H. et al. Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J. 29, 2358–2367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342–2357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki, N. et al. The Saccharomyces cerevisiae small GTPase, Gsp1p/Ran, is involved in 3′ processing of 7S-to-5.8S rRNA and in degradation of the excised 5′-A0 fragment of 35S pre-rRNA, both of which are carried out by the exosome. Genetics 158, 613–625 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisk, H.A., Mattison, C.P. & Winey, M. Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl. Acad. Sci. USA 100, 14875–14880 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boutros, R., Lobjois, V. & Ducommun, B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat. Rev. Cancer 7, 495–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kelly, A.E. & Funabiki, H. Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr. Opin. Cell Biol. 21, 51–58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zou, H., McGarry, T.J., Bernal, T. & Kirschner, M.W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Coleman, M.L., Marshall, C.J. & Olson, M.F. Ras promotes p21Waf1/Cip1 protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. EMBO J. 22, 2036–2046 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noguchi, E. et al. Dis3, implicated in mitotic control, binds directly to Ran and enhances the GEF activity of RCC1. EMBO J. 15, 5595–5605 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiomi, T. et al. Human dis3p, which binds to either GTP- or GDP-Ran, complements Saccharomyces cerevisiae dis3. J. Biochem. 123, 883–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Schneider, C., Anderson, J.T. & Tollervey, D. The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. Mol. Cell 27, 324–331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomecki, R., Drazkowska, K. & Dziembowski, A. Mechanisms of RNA degradation by the eukaryotic exosome. ChemBioChem 11, 938–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Schaeffer, D. et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat. Struct. Mol. Biol. 16, 56–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ohkura, H. et al. Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J. 7, 1465–1473 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moncla, A. et al. A cluster of translocation breakpoints in 2q37 is associated with overexpression of NPPC in patients with a similar overgrowth phenotype. Hum. Mutat. 28, 1183–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, S.W., Stevenson, A.L., Kearsey, S.E., Watt, S. & Bähler, J. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol. Cell. Biol. 28, 656–665 (2008).

    Article  PubMed  Google Scholar 

  32. Kiss, D.L. & Andrulis, E.D. Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3, and core exosome subunits. RNA 16, 781–791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bocciardi, R. et al. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum. Mutat. 28, 724–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lanktree, M.B. et al. Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height. Am. J. Hum. Genet. 88, 6–18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drummond, I.A. & Davidson, A.J. Zebrafish kidney development. Methods Cell Biol. 100, 233–260 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Slanchev, K., Putz, M., Schmitt, A., Kramer-Zucker, A. & Walz, G. Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum. Mol. Genet. 20, 3119–3128 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Viot-Szoboszlai, G. et al. Wilms' tumor and gonadal dysgenesis in a child with the 2q37.1 deletion syndrome. Clin. Genet. 53, 278–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Conrad, B. et al. Clinical phenotype associated with terminal 2q37 deletion. Clin. Genet. 48, 134–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Drake, K.M. et al. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562. Clin. Cancer Res. 15, 5985–5992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Rio Frio, T. et al. Homozygous BUB1B mutation and susceptibility to gastrointestinal neoplasia. N. Engl. J. Med. 363, 2628–2637 (2010).

    Article  PubMed  Google Scholar 

  42. Rozen, S. & Skaletsky, H.J. Primer 3 on WWW for general users and for biologist programmers. in Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds. Krawetz, S. & Misene, S.) 365–386 (Humana Press, NJ, 2000).

  43. Schilders, G., Raijmakers, R., Raats, J.M. & Pruijn, G.J. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res. 33, 6795–6804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulte-Merker, S. Looking at embryo. in Zebrafish: A Practical Approach (eds. Nusslein-Volhard, C. & Dahm, R.) 39–58 (Oxford University Press, Oxford, 2005).

Download references

Acknowledgements

We thank J. Arrand for processing the Affymetrix 50k SNP chip. We thank the Association of International Cancer Research (07-0503) and Cancer Research UK (C485/A5441) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and M.R.M. designed, carried out and analyzed genetic and cell biological experiments; W.N.C. did initial autozygosity mapping and analysis; R.H.J.S. conducted the RNase assay; N.C.W. carried out and analyzed MLPA; H.G. did zebrafish analysis; G.A.F. and S.S. did aneuploidy studies; D.G. and C.J.R. provided technical assistance; T.C., A.J.v.E., R.A.v.L., G.N., J.M.O., P.R., I.S.-D. and E.R.M. recruited subjects, gathered clinical information and contributed clinical samples; F.M., G.J.M.P., F.L. and E.R.M. designed and supervised experiments and analyzed data; E.R.M. directed the research; E.R.M., D.A. and M.M. drafted the manuscript and all authors critically reviewed the manuscript.

Corresponding author

Correspondence to Eamonn R Maher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–11 (PDF 4311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astuti, D., Morris, M., Cooper, W. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat Genet 44, 277–284 (2012). https://doi.org/10.1038/ng.1071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1071

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer