Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm

Abstract

A high-density haplotype map recently enabled a genome-wide association study (GWAS) in a population of indica subspecies of Chinese rice landraces. Here we extend this methodology to a larger and more diverse sample of 950 worldwide rice varieties, including the Oryza sativa indica and Oryza sativa japonica subspecies, to perform an additional GWAS. We identified a total of 32 new loci associated with flowering time and with ten grain-related traits, indicating that the larger sample increased the power to detect trait-associated variants using GWAS. To characterize various alleles and complex genetic variation, we developed an analytical framework for haplotype-based de novo assembly of the low-coverage sequencing data in rice. We identified candidate genes for 18 associated loci through detailed annotation. This study shows that the integrated approach of sequence-based GWAS and functional genome annotation has the potential to match complex traits to their causal polymorphisms in rice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic structure and population differentiation in 950 rice accessions.
Figure 2: Causal variant detection in six genes previously identified by GWAS in the indica population.
Figure 3: Illustration of haplotype-based local assembly.
Figure 4: Genome-wide association study of heading date in the indica population, the japonica population and the full population using the compressed MLM.
Figure 5: Regions of the genome showing association signals and the expression profiles of candidate genes.

Similar content being viewed by others

References

  1. Weigel, D. & Mott, R. The 1001 genomes project for Arabidopsis thaliana. Genome Biol. 10, 107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao, K. et al. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5, e10780 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Clark, R.M. Genome-wide association studies coming of age in rice. Nat. Genet. 42, 926–927 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Clark, R.M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  7. 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  8. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mao, H. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107, 19579–19584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saitoh, K., Onishi, K., Mikami, I., Thidar, K. & Sano, Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168, 997–1007 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sweeney, M.T., Thomson, M.J., Pfeil, B.E. & McCouch, S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18, 283–294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tian, Z. et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 106, 21760–21765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Weng, J. et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199–1209 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Schneeberger, K. et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc. Natl. Acad. Sci. USA 108, 10249–10254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pelak, K. et al. The characterization of twenty sequenced human genomes. PLoS Genet. 6, e1001111 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu, Y. et al. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20, 2946–2959 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren, Z.H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Mills, R.E. et al. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 21, 830–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, X. et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37, 517–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai, L. et al. Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theor. Appl. Genet. 121, 295–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buckler, E.S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Huang, Y., Bergelson, J., Nordborg, M. & Borevitz, J.O. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 21199–21204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kojima, S. et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, B.F. et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol. 155, 1301–1311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Song, X.J., Huang, W., Shi, M., Zhu, M.Z. & Lin, H.X.A. QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Cui, J. et al. Characterization and fine mapping of the ibf mutant in rice. J. Integr. Plant Biol. 49, 678–685 (2007).

    Article  CAS  Google Scholar 

  32. Kump, K.L. et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43, 163–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Tian, F. et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43, 159–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  35. Myles, S. et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21, 2194–2202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, T. et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-Seq. Genome Res. 20, 1238–1249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alkan, C., Coe, B.P. & Eichler, E.E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ossowski, S. et al. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18, 2024–2033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tan, Y.F. et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 103, 1037–1045 (2001).

    Article  CAS  Google Scholar 

  42. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

  44. Wang, D. et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12, 149 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jain, M. et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 143, 1467–1483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the China National Rice Research Institute for providing the rice germplasm samples. We thank S. Griffiths and G. Moore for critical reading of the manuscript. We thank Z. Zhang and E.S. Buckler for helping us use the compressed MLM and Z. Ning for assistance with sequence alignment. This work was supported by the Chinese Academy of Sciences (KSCX2-YW-N-094), the Ministry of Agriculture of China (2011ZX08001-004 and 2011ZX08009-002), the National Natural Science Foundation of China (30821004) and the Ministry of Science and Technology of China (2011CB100205) to B.H.

Author information

Authors and Affiliations

Authors

Contributions

B.H. conceived of the project and its components. J.L. and B.H. contributed to the original concept of the project. W.L., Y.G., L.D., D.F., Y.L., Q.W. and Q.F. performed the genome sequencing. X.H., Q.Z., Y.Z., C.Z., K.L., L.S., T.H. and T.L. performed the genome data analyses. Y.Z., C.Z., Q.Z. and X.H. improved the imputation program for the data analyses. X.H., Q.Z. and Y.Z. developed an analytical framework for de novo assembly of the low-coverage sequencing data. X.W., C.L., A.W., T.Z., Y.J., G.D. and Q.Q. collected samples and performed the phenotyping. Y.Z. and X.H. performed the GWAS and statistical analyses. X.H. and B.H. analyzed all of the data together and wrote the paper.

Corresponding author

Correspondence to Bin Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 4, 6, 7 and 9–12 and Supplementary Figures 1–31. (PDF 14125 kb)

Supplementary Table 1

The list of 950 accessions sampled in the collection. (XLS 181 kb)

Supplementary Table 2

The levels of sequence diversity (π) in each group across the rice genome. (XLS 477 kb)

Supplementary Table 3

The levels of pariwise population differentiation (Fst) across the rice genome. (XLS 382 kb)

Supplementary Table 5

The list of SNP sites with population-special alleles. (XLS 64 kb)

Supplementary Table 8

The detailed list of all the large-effect variations in rice genome. (XLS 788 kb)

Supplementary Table 13

The detailed list of the microarrays used in the study and their related descriptions. (XLS 158 kb)

Supplementary Table 14

The genotype dataset of indica accessions on the causal polymorphic sites of Hd3a. (XLS 32 kb)

Supplementary Table 15

The genotype dataset of indica accessions on the causal polymorphic sites of OsFBX310. (XLS 53 kb)

Supplementary Table 16

The genotype dataset of japonica accessions on the causal polymorphic sites of OsRAL6. (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Zhao, Y., Wei, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44, 32–39 (2012). https://doi.org/10.1038/ng.1018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing