Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bayesian inference of ancient human demography from individual genome sequences

Abstract

Whole-genome sequences provide a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters based on the whole-genome sequences of six individuals from diverse human populations. We used a Bayesian, coalescent-based approach to obtain information about ancestral population sizes, divergence times and migration rates from inferred genealogies at many neutrally evolving loci across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San population of southern Africa diverged from other human populations approximately 108–157 thousand years ago, that Eurasians diverged from an ancestral African population 38–64 thousand years ago, and that the effective population size of the ancestors of all modern humans was 9,000.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population phylogeny and genealogies.
Figure 2: Results of the simulation study.
Figure 3: Parameter estimates from real data.

Similar content being viewed by others

References

  1. Cavalli-Sforza, L.L. & Feldman, M.W. The application of molecular genetic approaches to the study of human evolution. Nat. Genet. 33 (suppl.) 266–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cann, R.L., Stoneking, M. & Wilson, A.C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Gonder, M.K., Mortensen, H.M., Reed, F.A., de Sousa, A. & Tishkoff, S.A. Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evol. 24, 757–768 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zhivotovsky, L.A., Rosenberg, N.A. & Feldman, M.W. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am. J. Hum. Genet. 72, 1171–1186 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu, H., Prugnolle, F., Manica, A. & Balloux, F. A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Genet. 79, 230–237 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Voight, B.F. et al. Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. Proc. Natl. Acad. Sci. USA 102, 18508–18513 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fagundes, N.J. et al. Statistical evaluation of alternative models of human evolution. Proc. Natl. Acad. Sci. USA 104, 17614–17619 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wall, J.D., Lohmueller, K.E. & Plagnol, V. Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol. Biol. Evol. 26, 1823–1827 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H. & Bustamante, C.D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Keinan, A., Mullikin, J.C., Patterson, N. & Reich, D. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in east Asians than in Europeans. Nat. Genet. 39, 1251–1255 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ahn, S.M. et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 19, 1622–1629 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Schuster, S.C. et al. Complete Khoisan and Bantu genomes from southern Africa. Nature 463, 943–947 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Garrigan, D. et al. Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data. Genetics 177, 2195–2207 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tishkoff, S.A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rannala, B. & Yang, Z. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgess, R. & Yang, Z. Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors. Mol. Biol. Evol. 25, 1979–1994 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen, R. & Wakeley, J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S. & Reich, D. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21, 12–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lewontin, R.C. The apportionment of human diversity. in Evolutionary Biology (eds. Dobzhansky, T.H., Hecht, M.K. & Steere, W.C.) 6 (Appleton-Century-Crofts, New York, New York, USA, 1972).

  27. Beaumont, M.A., Zhang, W. & Balding, D.J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).

    PubMed  PubMed Central  Google Scholar 

  28. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hobolth, A., Christensen, O.F., Mailund, T. & Schierup, M.H. Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet. 3, e7 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  30. Paul, J.S., Steinrucken, M. & Song, Y.S. An accurate sequentially markov conditional sampling distribution for the coalescent with recombination. Genetics 187, 1115–1128 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  33. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  35. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Packard Fellowship (to A.S.), National Science Foundation grant DBI-0644111 and National Institutes of Health training grant T32HD052471 (to C.G.D.). We thank S. Schuster, W. Miller, D. Reich, G. Coop, J. Hey, J. Wall, R.S. Wells, A. Keinan, A.G. Clark, S.C. Choi, C.D. Bustamante, B. Henn and others for helpful discussions and feedback.

Author information

Authors and Affiliations

Authors

Contributions

A.S. conceived of and designed the study. I.G. implemented G-PhoCS and applied it to both simulated and real data. B.G. implemented BSNP and applied it to the individual genomes. I.G., M.J.H., B.G., C.G.D. and A.S. performed additional statistical analyses. I.G. and A.S. wrote the paper with review and contributions by all authors.

Corresponding author

Correspondence to Adam Siepel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1–7 and Supplementary Note. (PDF 3609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronau, I., Hubisz, M., Gulko, B. et al. Bayesian inference of ancient human demography from individual genome sequences. Nat Genet 43, 1031–1034 (2011). https://doi.org/10.1038/ng.937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.937

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research