Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance

Abstract

We have genetically retrieved, resurrected and performed detailed structure-function analyses on authentic woolly mammoth hemoglobin to reveal for the first time both the evolutionary origins and the structural underpinnings of a key adaptive physiochemical trait in an extinct species. Hemoglobin binds and carries O2; however, its ability to offload O2 to respiring cells is hampered at low temperatures, as heme deoxygenation is inherently endothermic (that is, hemoglobin-O2 affinity increases as temperature decreases). We identify amino acid substitutions with large phenotypic effect on the chimeric β/δ-globin subunit of mammoth hemoglobin that provide a unique solution to this problem and thereby minimize energetically costly heat loss. This biochemical specialization may have been involved in the exploitation of high-latitude environments by this African-derived elephantid lineage during the Pleistocene period. This powerful new approach to directly analyze the genetic and structural basis of physiological adaptations in an extinct species adds an important new dimension to the study of natural selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the genes encoding the single adult-expressed hemoglobin component of three members of the Elephantidae family.
Figure 2: Surface model of a chimeric Asian elephant (left) and mammoth (right) deoxyhemoglobin molecule bound to 2,3-bisphosphoglycerate (BPG).
Figure 3: Oxygen equilibrium curves of woolly mammoth (blue) and Asian elephant hemoglobin (red) at 37 °C and pH 7.0.
Figure 4: Mean enthalpy of oxygenation (ΔH; kJ mol−1 O2) values of woolly mammoth (blue columns) and Asian elephant (red columns) hemoglobin in the absence and presence of effector molecules.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Benner, S.A., Caraco, M.D., Thomson, M. & Gaucher, E.A. Planetary biology— paleontological, geological, and molecular histories of life. Science 296, 864–868 (2002).

    Google Scholar 

  2. Jermann, T.M., Optiz, J.G., Stackhouse, J. & Benner, S.A. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374, 57–59 (1995).

    Google Scholar 

  3. Beintema, J.J., Schuller, C., Irie, M. & Carsana, A. Molecular evolution of the ribonuclease superfamily. Prog. Biophys. Mol. Biol. 51, 165–192 (1988).

    Google Scholar 

  4. Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, e207 (2007).

    Google Scholar 

  5. Lister, A.M., Sher, A.V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126–128, 49–64 (2005).

    Google Scholar 

  6. Lister, A.M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004).

    Google Scholar 

  7. Lister, A. & Bahn, P.G. Mammoths: Giants of the Ice Age (University of California Press, Berkeley, California, USA, 2007).

  8. Repin, V.E., Taranov, O.S., Ryabchikova, E.I., Tikhonov, A.N. & Pugachev, V.G. Sebaceous glands of the woolly mammoth, Mammuthus primigenius Blum: histological evidence. Dokl. Biol. Sci. 398, 382–384 (2004).

    Google Scholar 

  9. Römpler, H. et al. Nuclear gene indicates coat-color polymorphism in mammoths. Science 313, 62 (2006).

    Google Scholar 

  10. Miller, W. et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456, 387–390 (2008).

    Google Scholar 

  11. Braunitzer, G., Jelkmann, W., Stangl, A., Schrank, B. & Krombach, C. Hemoglobins, XLVIII: the primary structure of hemoglobin of the Indian elephant (Elephas maximus, Proboscidea): beta2=Asn. Hoppe-Seyler's Z. Physiol. Chem. 363, 683–691 (1982).

    Google Scholar 

  12. Braunitzer, G., Stangl, A., Schrank, B., Krombach, C. & Wiesner, H. Phosphate-haemoglobin interaction. The primary structure of the haemoglobin of the African elephant (Loxodonta africana, Proboscidea): asparagine in position 2 of the beta-chain. Hoppe-Seyler's Z. Physiol. Chem. 365, 743–749 (1984).

    Google Scholar 

  13. Opazo, J.C., Sloan, A.M., Campbell, K.L. & Storz, J.F. Origin and ascendency of a chimeric fusion gene: the beta/delta-globin gene of paenungulate mammals. Mol. Biol. Evol. 26, 1469–1478 (2009).

    Google Scholar 

  14. Perutz, M.F. Species adaptation in a protein molecule. Mol. Biol. Evol. 1, 1–28 (1983).

    Google Scholar 

  15. Shih, D.T., Jones, R.T., Imai, K. & Tyuma, I. Involvement of Glu G3(101)beta in the function of hemoglobin. Comparative O2 equilibrium studies of human mutant hemoglobins. J. Biol. Chem. 260, 5919–5924 (1985).

    Google Scholar 

  16. Baudin, V. et al. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers. Protein Sci. 2, 1320–1330 (1993).

    Google Scholar 

  17. Jones, R.T. & Shih, T.B. Hemoglobin variants with altered oxygen affinity. Hemoglobin 4, 243–261 (1980).

    Google Scholar 

  18. Nakatsuji, T., Shimizu, K. & Huisman, T.H. Hb F-La Grange or α2γ2101(G3)Glu→Lys; 75Ile; 136Gly: A high oxygen affinity fetal haemoglobin variant observed in a causcasian newborn. Biochim. Biophys. Acta 789, 224–228 (2004).

    Google Scholar 

  19. Clementi, M.E., Condò, S.G., Castagnola, M. & Giardina, B. Hemoglobin function under extreme life conditions. Eur. J. Biochem. 223, 309–317 (1994).

    Google Scholar 

  20. De Rosa, M.C., Castagnola, M., Bertonati, C., Galtier, A. & Giardina, B. From the Arctic to fetal life: physiological importance and structural basis of an 'additional' chloride-binding site in haemoglobin. Biochem. J. 380, 889–896 (2004).

    Google Scholar 

  21. Irving, L. & Krog, J. Temperature of skin in the arctic as a regulator of heat. J. Appl. Physiol. 7, 355–364 (1955).

    Google Scholar 

  22. Fronticelli, C. et al. Allosteric modulation by tertiary structure in mammalian hemoglobins. Introduction of the functional characteristics of bovine hemoglobin into human hemoglobin by five amino acid substitutions. J. Biol. Chem. 270, 30588–30592 (1995).

    Google Scholar 

  23. Shen, T.J. et al. Production of unmodified human adult hemoglobin in Escherichia coli. Proc. Natl. Acad. Sci. USA 90, 8108–8112 (1993).

    Google Scholar 

  24. Weber, R.E. Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function. J. Appl. Physiol. 72, 1611–1615 (1992).

    Google Scholar 

  25. Park, S.-Y., Yokoyama, T., Shibayama, N., Shiro, Y. & Tame, J.R.H. 1.25 Å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. J. Mol. Biol. 360, 690–701 (2006).

    Google Scholar 

  26. Abraham, D.J., Peascoe, R.A., Randad, R.S. & Panikker, J. X-ray diffraction study of di and tetra-ligated T-state hemoglobin from high salt crystals. J. Mol. Biol. 227, 480–492 (1992).

    Google Scholar 

  27. Turner, G.J. et al. Mutagenic dissection of hemoglobin cooperativity: Effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers. Prot. Str. Funct. Gen. 14, 333–350 (1992).

    Google Scholar 

  28. Römpler, H. et al. Multiplex amplification of ancient DNA. Nat. Protoc. 1, 720–728 (2006).

    Google Scholar 

  29. Barnes, I. et al. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr. Biol. 17, 1072–1075 (2007).

    Google Scholar 

  30. Oostenbrink, C., Villa, A., Mark, A.E. & van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank T. Kuznetsova for the mammoth samples, W. Korver for providing Asian and African elephant blood and A. Bang, T.C. Tam, N. Ho, J. Hare, J. da Silva and M. Pagel for technical assistance. Financial support was provided by the National Sciences and Engineering Research Council (NSERC) of Canada (K.L.C. and J.S.), Winnipeg Foundation (K.L.C.), University of Manitoba Research Grant Program (K.L.C.), Japan Society for the Promotion of Science (J.R.H.T.), Max Planck Society (M.H. and N.R.), US National Institutes of Health grant R01GM-084614; C.H.), Danish Natural Science Research Council and the Carlsberg Foundation (R.E.W.) and the Australian Research Council (A.C. and L.N.W.). J.E.E.R., J.W.H. and A.V.S. were supported by NSERC Undergraduate Research Awards, and A.M.S. was supported by a University of Manitoba Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.L.C. conceived the research. K.L.C., J.S., M.H., J.J.A., T.-J.S., C.H., R.E.W. and A.C. designed the experiments. K.L.C., J.E.E.R., L.N.W., A.M.S., A.V.S., J.W.H., N.R., T.-J.S., R.E.W. and J.J.A. conducted the experiments. K.L.C., J.S., A.V.S., J.R.H.T., R.E.W. and A.C. analyzed the data. K.L.C. and A.C. drafted the manuscript, and K.L.C., M.H., J.R.H.T., C.H., R.E.W. and A.C. contributed to the final manuscript writing and its revisions.

Corresponding authors

Correspondence to Kevin L Campbell or Alan Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–12 and Supplementary Tables 1–4 (PDF 1696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, K., Roberts, J., Watson, L. et al. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nat Genet 42, 536–540 (2010). https://doi.org/10.1038/ng.574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing