Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development

Abstract

MicroRNAs are small noncoding RNAs that carry out post-transcriptional regulation of the expression of their target genes. However, their roles in mammalian organogenesis are only beginning to be understood. Here we show that the microRNA-212/132 family (which comprises miR-212 and miR-132) is indispensable during the development of the mammary glands in mice, particulary for the regulation of the outgrowth of the epithelial ducts. Mammary transplantation experiments revealed that the function of the miR-212/132 family is required in the stroma but not in the epithelia. Both miR-212 and miR-132 are expressed exclusively in mammary stroma and directly target the matrix metalloproteinase MMP-9. In glands that lack miR-212 and miR-132, MMP-9 expression increases and accumulates around the ducts. This may interfere with collagen deposition and lead to hyperactivation of the tumor growth factor-β signaling pathway, thereby impairing ductal outgrowth. Our results identify the miR-212/132 family as one of the main regulators of the epithelial-stromal interactions that are required for proper pubertal development of the mammary gland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic deletion of miR-212/132 in mice results in mammary gland defects associated with impaired nourishment of pups.
Figure 2: miR-212/132−/− mammary glands have a defect in pubertal ductal outgrowth, but not in ductal side branching and lobuloalveolar differentiation.
Figure 3: miR-212/132−/− mammary epithelia have normal ductal architecture.
Figure 4: miR-212/132−/− mammary epithelia have normal capacity for ductal outgrowth.
Figure 5: The miR-212/132−/− stroma is not permissive for pubertal outgrowth of the epithelial ducts.
Figure 6: In the mammary gland, miR-212 and miR-132 are exclusively expressed in the stromal cells, but not in the epithelia.
Figure 7: Loss of miR-212 and miR-132 causes high MMP-9 levels and hyperactivity of TGF-β pathway in mutant mammary glands.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Y. & Srivastava, D. A developmental view of microRNA function. Trends Biochem. Sci. 32, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Smibert, P. & Lai, E.C. Lessons from microRNA mutants in worms, flies and mice. Cell Cycle 7, 2500–2508 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wayman, G.A. et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. USA 105, 9093–9098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Impey, S. et al. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol. Cell. Neurosci. 43, 146–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kawashima, H. et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165, 1301–1311 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, H.Y. et al. MicroRNA modulation of circadian-clock period and entrainment. Neuron 54, 813–829 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Howlin, J., McBryan, J. & Martin, F. Pubertal mammary gland development: Insights from mouse models. J. Mammary Gland Biol. Neoplasia 11, 283–297 (2006).

    Article  PubMed  Google Scholar 

  12. Richert, M.M. et al. An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia 5, 227–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hennighausen, L. & Robinson, G.W. Signaling pathways in mammary gland development. Dev. Cell 1, 467–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Watson, C.J. & Khaled, W.T. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135, 995–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Hennighausen, L. & Robinson, G.W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol. 6, 715–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Parmar, H. & Cunha, G.R. Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr. Relat. Cancer 11, 437–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Neville, M.C., Medina, D., Monks, J. & Hovey, R.C. The mammary fat pad. J. Mammary Gland Biol. Neoplasia 3, 109–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Wiseman, B.S. & Werb, Z. Stromal effects on mammary gland development and breast cancer. Science 296, 1046–1049 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Remenyi, J. et al. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem. J. 428, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Mailleux, A.A., Overholtzer, M. & Brugge, J.S. Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 7, 57–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fiedler, S.D., Carletti, M.Z., Hong, X. & Christenson, L.K. Hormonal regulation of microRNA expression in periovulatory mouse mural granulosa cells. Biol. Reprod. 79, 1030–1037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silberstein, G.B., Strickland, P., Coleman, S. & Daniel, C.W. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J. Cell Biol. 110, 2209–2219 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Daniel, C.W., Robinson, S. & Silberstein, G.B. The role of TGF-beta in patterning and growth of the mammary ductal tree. J. Mammary Gland Biol. Neoplasia 1, 331–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Silberstein, G.B. Postnatal mammary gland morphogenesis. Microsc. Res. Tech. 52, 155–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wiseman, B.S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 162, 1123–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson, S.D. et al. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113, 867–878 (1991).

    CAS  PubMed  Google Scholar 

  27. Kang, J.S., Liu, C. & Derynck, R. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol. 19, 385–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  29. Wilson, T.J., Nannuru, K.C. & Singh, R.K. Cathepsin G-mediated activation of pro-matrix metalloproteinase 9 at the tumor-bone interface promotes transforming growth factor-beta signaling and bone destruction. Mol. Cancer Res. 7, 1224–1233 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto, T. et al. Transforming growth factor-beta 1 induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways. Biochem. Biophys. Res. Commun. 383, 475–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Sinpitaksakul, S.N., Pimkhaokham, A., Sanchavanakit, N. & Pavasant, P. TGF-beta 1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem. Biophys. Res. Commun. 371, 713–718 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Seomun, Y., Kim, J.T. & Joo, C.K. MMP-14 mediated MMP-9 expression is involved in TGF-beta 1-induced keratinocyte migration. J. Cell. Biochem. 104, 934–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Chou, Y.T., Wang, H., Chen, Y., Danielpour, D. & Yang, Y.C. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene 25, 5547–5560 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Konrad, L., Scheiber, J.A., Schwarz, L., Schrader, A.J. & Hofmann, R. TGF-beta1 and TGF-beta2 strongly enhance the secretion of plasminogen activator inhibitor-1 and matrix metalloproteinase-9 of the human prostate cancer cell line PC-3. Regul. Pept. 155, 28–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Howlin, J. et al. CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene 25, 1532–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Luetteke, N.C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739–2750 (1999).

    CAS  PubMed  Google Scholar 

  37. Ciarloni, L., Mallepell, S. & Brisken, C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc. Natl. Acad. Sci. USA 104, 5455–5460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiesen, J.F., Young, P., Werb, Z. & Cunha, G.R. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126, 335–344 (1999).

    CAS  PubMed  Google Scholar 

  39. Shioda, T. et al. Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl. Acad. Sci. USA 95, 9785–9790 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parsa, S. et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev. Biol. 317, 121–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, P., Ewald, A.J., Martin, G.R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol. 321, 77–87 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roarty, K. & Serra, R. Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal outgrowth. Development 134, 3929–3939 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ibarra, I., Erlich, Y., Muthuswamy, S.K., Sachidanandam, R. & Hannon, G.J. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 21, 3238–3243 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kong, W. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 28, 6773–6784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka, T., Haneda, S., Imakawa, K., Sakai, S. & Nagaoka, K. A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77, 181–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Rasmussen, S.B., Young, L.J.T. & Smith, G.H. in Methods in Mammary Gland Biology and Breast Cancer Research. (eds. Ip, M.M. and Asch, B.B.) 75–86 (Kluwer Academic/Plenum, New York, 2000).

  47. Young, L.J.T. in Methods in Mammary Gland Biology and Breast Cancer Research (eds. Ip, M.M. and Asch, B.B.) 67–74 (Kluwer Academic/Plenum, New York, 2000).

  48. Sangai, T. et al. Hormonal stimulation increases the recruitment of bone marrow-derived myoepithelial cells and periductal fibroblasts into the mammary gland. Biochem. Biophys. Res. Commun. 346, 1173–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Geisendorf for technical assistance, S. Hille for DNA sequencing, S. Mahsur and U. Franke for technical help in generation of knockout mouse line, A. Kurth, A. Driehorst, K. Kiel and U. Teichman for animal care work, M. Smalley for discussion about mammary epithelial transplantation method, N. Ba Tiep for technical help with collecting blood samples, A. Yalcin for creative contribution to the initial phase of the work, and P. Gruss and G. Eichele for encouragement and support. Funded by the Max Planck Society. Additional funding was provided by the Deutsche Forschungsgemeinschaft (DFG, GR 536/9-2 and GR 536/11-1 to B.G. and TH 903/7-2 to T.T.).

Author information

Authors and Affiliations

Authors

Contributions

A.U. and K.C. developed the concept of this study. A.U. performed all experiments except the mammary epithelial transplantation analyses, which were performed by V.V. and P.A.B.K. in the laboratory of B.G., serum hormone level analyses, which were done by H.J., and luciferase assays, which were done by J.F. in the laboratory of T.T. The manuscript was written by A.U. and K.C. Important suggestions were made by B.G., V.V. and T.T. which improved the quality of the manuscript. All authors contributed to the discussion of the data and commented on the final version of the manuscript.

Corresponding author

Correspondence to Kamal Chowdhury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Note (PDF 9611 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ucar, A., Vafaizadeh, V., Jarry, H. et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet 42, 1101–1108 (2010). https://doi.org/10.1038/ng.709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing