Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions

Abstract

Accumulation of genetic incompatibilities within species can lead to reproductive isolation and, potentially, speciation. In this study, we show that allelic variation at SRF3 (Strubbelig Receptor Family 3), encoding a receptor-like kinase, conditions the occurrence of incompatibility between Arabidopsis thaliana accessions. The geographical distribution of SRF3 alleles reveals that allelic forms causing epistatic incompatibility with a Landsberg erecta allele at the RPP1 resistance locus are present in A. thaliana accessions in central Asia. Incompatible SRF3 alleles condition for an enhanced early immune response to pathogens as compared to the resistance-dampening effect of compatible SRF3 forms in isogenic backgrounds. Variation in disease susceptibility suggests a basis for the molecular patterns of a recent selective sweep detected at the SRF3 locus in central Asian populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRF3 allelic forms and world-wide distribution of incompatible alleles.
Figure 2: Genetic structure and SRF3 allelic diversity.
Figure 3: Immune responses in compatible and incompatible lines.
Figure 4: Normalized Fay and Wu's H statistic across the SRF3 genomic region in central Asian (red) and north European (blue) accessions.

Accession codes

Accessions

ArrayExpress

NCBI Reference Sequence

References

  1. Rieseberg, L.H. & Willis, J.H. Plant speciation. Science 317, 910–914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bomblies, K. Doomed lovers: mechanisms of isolation and incompatibility in plants. Annu. Rev. Plant Biol. 61, 109–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press, New York, 1937).

  4. Muller, H. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6, 71–124 (1942).

    Google Scholar 

  5. Bomblies, K. & Weigel, D. Arabidopsis and relatives as models for the study of genetic and genomic incompatibilities. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1815–1823 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alcázar, R., García, A.V., Parker, J.E. & Reymond, M. Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc. Natl. Acad. Sci. USA 106, 334–339 (2009).

    Article  PubMed  Google Scholar 

  7. Bikard, D. et al. Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323, 623–626 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Bomblies, K. et al. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 5, e236 (2007); comment 5, e262 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eyüboglu, B. et al. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. BMC Plant Biol. 7, 16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. el-Lithy, M.E. et al. New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 172, 1867–1876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, J.D.G. & Dangl, J.L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Benschop, J.J. et al. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465–476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K. & Shirasu, K. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J. Biol. Chem. 281, 36969–36976 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Suarez-Rodriguez, M.C. et al. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 143, 661–669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Brodersen, P. et al. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 47, 532–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D. & Katagiri, F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 53, 763–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Yuan, J. & He, S.Y. The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J. Bacteriol. 178, 6399–6402 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fay, J.C. & Wu, C.I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, K., Fu, Y.X., Shi, S.H. & Wu, C.I. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174, 1431–1439 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bakker, E.G., Toomajian, C., Kreitman, M. & Bergelson, J. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18, 1803–1818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mishina, T.E. & Zeier, J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50, 500–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306–10311 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feys, B.J., Moisan, L.J., Newman, M.A. & Parker, J.E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 20, 5400–5411 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bechtold, N. & Pelletier, G. In planta Agrobacterium mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259–266 (1998).

    CAS  PubMed  Google Scholar 

  28. Koncz, C. & Schell, J. The promoter of Tl-DNA Gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396 (1986).

    Article  CAS  Google Scholar 

  29. Alonso, J.M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article  PubMed  Google Scholar 

  30. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Tornero, P. & Dangl, J.L. A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J. 28, 475–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Feys, B.J. et al. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17, 2601–2613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Häweker, H. et al. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J. Biol. Chem. 285, 4629–4636 (2010).

    Article  PubMed  Google Scholar 

  35. Wakeley, J. & Aliacar, N. Gene genealogies in a metapopulation. Genetics 159, 893–905 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Clustal-W–Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hudson, R.R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Alonso-Blanco, V. le Corre, M.H. Hoffmann, K. Schmid, O.A. Rognli and O. Loudet for providing seed materials. We thank B. Huettel for microarray hybridizations. This work was funded by Deutsche Forschungsgemeinschaft SFB 680 grants (to M.R., J.E.P. and J.d.M.). The authors also acknowledge the Max Planck Society and an International Max Planck Research School fellowship to A.V.G.

Author information

Authors and Affiliations

Authors

Contributions

R.A., M.K., J.E.P. and M.R. conceived the study. R.A. performed most of the experimental work with contributions from A.V.G. in the pathogen infection assays. I.K. and J.d.M. performed the computer analysis and interpretation of Fay and Wu's Hn statistics. M.K. provided accessions and European F2 populations. J.E.P. provided materials for immune analyses. M.R. performed all statistical analyses. All authors analyzed the data. R.A., J.E.P and M.R. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Matthieu Reymond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–6 (PDF 1990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcázar, R., García, A., Kronholm, I. et al. Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat Genet 42, 1135–1139 (2010). https://doi.org/10.1038/ng.704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing