Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans

Abstract

PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice1,2,3. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling5. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability—specifically, a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7—implicating PRDM9 as a risk factor for some pathological genome rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRDM9 ZnF variants and crossover hot-spot activity in sperm.
Figure 2: Activating and nonactivating PRDM9 alleles.
Figure 3: PRDM9 variation influences crossover activity at hot spots MSTM1a and MSTM1b.
Figure 4: Influence of PRDM9 variation on minisatellite instability in sperm.
Figure 5: PRDM9 variation and de novo HNPP/CMT1A rearrangements in sperm DNA.
Figure 6: PRDM9 variation and t(11;22) translocation frequencies.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010).

    Article  CAS  Google Scholar 

  2. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010).

    Article  CAS  Google Scholar 

  3. Parvanov, E.D., Petkov, P.M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327, 835 (2010).

    Article  CAS  Google Scholar 

  4. Myers, S., Freeman, C., Auton, A., Donnelly, P. & McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 40, 1124–1129 (2008).

    Article  CAS  Google Scholar 

  5. Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nat. Rev. Genet. 11, 221–233 (2010).

    Article  CAS  Google Scholar 

  6. Turner, D.J. et al. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat. Genet. 40, 90–95 (2008).

    Article  CAS  Google Scholar 

  7. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  8. Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–378 (2005).

    Article  CAS  Google Scholar 

  9. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  10. Webb, A.J., Berg, I.L. & Jeffreys, A. Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association. Proc. Natl. Acad. Sci. USA 105, 10471–10476 (2008).

    Article  CAS  Google Scholar 

  11. Jeffreys, A.J. & Neumann, R. The rise and fall of a human recombination hot spot. Nat. Genet. 41, 625–629 (2009).

    Article  CAS  Google Scholar 

  12. Jeffreys, A.J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    Article  CAS  Google Scholar 

  13. Jeffreys, A.J. & Neumann, R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat. Genet. 31, 267–271 (2002).

    Article  CAS  Google Scholar 

  14. Jeffreys, A.J. & Neumann, R. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum. Mol. Genet. 14, 2277–2287 (2005).

    Article  CAS  Google Scholar 

  15. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  Google Scholar 

  16. Neumann, R. & Jeffreys, A.J. Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum. Mol. Genet. 15, 1401–1411 (2006).

    Article  CAS  Google Scholar 

  17. Buard, J., Bourdet, A., Yardley, J., Dubrova, Y. & Jeffreys, A.J. Influences of array size and homogeneity on minisatellite mutation. EMBO J. 17, 3495–3502 (1998).

    Article  CAS  Google Scholar 

  18. Tamaki, K., May, C.A., Dubrova, Y.E. & Jeffreys, A.J. Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum. Mol. Genet. 8, 879–888 (1999).

    Article  CAS  Google Scholar 

  19. Berg, I., Neumann, R., Cederberg, H., Rannug, U. & Jeffreys, A.J. Two modes of germline instability at human minisatellite MS1 (locus D1S7): complex rearrangements and paradoxical hyperdeletion. Am. J. Hum. Genet. 72, 1436–1447 (2003).

    Article  CAS  Google Scholar 

  20. Jeffreys, A.J., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 (1998).

    Article  CAS  Google Scholar 

  21. Conrad, D.F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    Article  CAS  Google Scholar 

  22. Pentao, L., Wise, C.A., Chinault, A.C., Patel, P.I. & Lupski, J.R. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat. Genet. 2, 292–300 (1992).

    Article  CAS  Google Scholar 

  23. Lindsay, S.J., Khajavi, M., Lupski, J.R. & Hurles, M.E. A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination. Am. J. Hum. Genet. 79, 890–902 (2006).

    Article  CAS  Google Scholar 

  24. Kurahashi, H. & Emanuel, B.S. Unexpectedly high rate of de novo constitutional t(11;22) translocations in sperm from normal males. Nat. Genet. 29, 139–140 (2001).

    Article  CAS  Google Scholar 

  25. Kato, T. et al. Genetic variation affects de novo translocation frequency. Science 311, 971 (2006).

    Article  CAS  Google Scholar 

  26. Reich, D.E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  Google Scholar 

  27. Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398–1401 (2008).

    Article  CAS  Google Scholar 

  28. Chowdhury, R. et al. Genetic analysis of variation in human meiotic recombination. PLoS Genet. 5, e1000648 (2009).

    Article  Google Scholar 

  29. Kurahashi, H. et al. Tightly clustered 11q23 and 22q11 breakpoints permit PCR-based detection of the recurrent constitutional t(11;22). Am. J. Hum. Genet. 67, 763–768 (2000).

    Article  CAS  Google Scholar 

  30. Monckton, D.G. et al. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat. Genet. 8, 162–170 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Blower and volunteers for providing semen samples, colleagues for helpful discussions and the Medical Research Council, the Wellcome Trust (ref. 081227/Z/06/Z), the Boehringer Ingelheim Fonds, the Royal Society and the Louis-Jeantet Foundation for funding support.

Author information

Authors and Affiliations

Authors

Contributions

I.L.B., R.N., K.-W.G.L., S.S., L.O.-H., C.A.M. and A.J.J. all contributed to designing aspects of the study. I.L.B., R.N. and A.J.J. characterized PRDM9 alleles, I.L.B., S.S., L.O.-H. and A.J.J. analyzed hot spots, R.N. surveyed minisatellite instability, K.-W.G.L. characterized genome rearrangements and A.J.J. analyzed translocations. A.J.J. wrote the paper.

Corresponding author

Correspondence to Alec J Jeffreys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1 and 2 (PDF 711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, I., Neumann, R., Lam, KW. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 42, 859–863 (2010). https://doi.org/10.1038/ng.658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing